1887

Abstract

Recombinant adenoviral vectors based on type 5 (rAd5) show great promise as a vaccine carrier. However, neutralizing activity against Ad5 is prevalent and high-titred among human populations, and significantly dampens Ad5-based vaccine modalities. The generation of alternative adenoviral vectors with low seroprevalence thus receives much research attention. Here, it is shown that a member from human adenovirus subgroup D, i.e. Ad49, does not cross-react with Ad5 neutralizing activity, making it a candidate serotype for vector development. Therefore, a plasmid system that allows formation of replication-incompetent adenovirus serotype 49 vaccine vectors (rAd49) was constructed and it was demonstrated that rAd49 can be successfully propagated to high titres on existing Ad5.E1-complementing cell lines such as PER.C6. Using an rAd49 vector carrying the luciferase marker gene, detailed seroprevalence studies were performed, demonstrating that rAd49 has low seroprevalence and neutralizing antibody titres worldwide. Also, we have initiated rAd49 vector receptor usage suggesting that rAd49 utilizes hCD46 as a cellular receptor. Finally, the immunogenicity of the rAd49 vector was assessed and it was shown that an rAd49.SIVGag vaccine induces strong anti-SIVGag CD8 T-lymphocytes in naïve mice, albeit less than an rAd5.SIVGag vaccine. However, in mice with high anti-Ad5 immunity the rAd5.SIVGag vaccine was severely blunted, whereas the anti-SIVGag response was not significantly suppressed using the rAd49.SIVGag vaccine. These data demonstrate the potential of a replication deficient human group D adenoviral vector for vaccination purposes.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82079-0
2006-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/10/2891.html?itemId=/content/journal/jgv/10.1099/vir.0.82079-0&mimeType=html&fmt=ahah

References

  1. Altman J. D., Moss P. A., Goulder P. J., Barouch D. H., McHeyzer-Williams M. G., Bell J. I., McMichael A. J., Davis M. M. 1996; Phenotypic analysis of antigen-specific T lymphocytes. Science 274:94–96 [CrossRef]
    [Google Scholar]
  2. Arnberg N., Edlund K., Kidd A. H., Wadell G. 2000a; Adenovirus type 37 uses sialic acid as a cellular receptor. J Virol 74:42–48 [CrossRef]
    [Google Scholar]
  3. Arnberg N., Kidd A. H., Edlund K., Olfat F., Wadell G. 2000b; Initial interactions of subgenus D adenoviruses with A549 cellular receptors: sialic acid versus α v integrins. J Virol 74:7691–7693 [CrossRef]
    [Google Scholar]
  4. Barouch D. H., McKay P. F., Sumida S. M. & 8 other authors 2003; Plasmid chemokines and colony-stimulating factors enhance the immunogenicity of DNA priming-viral vector boosting human immunodeficiency virus type 1 vaccines. J Virol 77:8729–8735 [CrossRef]
    [Google Scholar]
  5. Barouch D. H., Pau M. G., Custers J. H. & 15 other authors 2004; Immunogenicity of recombinant adenovirus serotype 35 vaccine in the presence of pre-existing anti-Ad5 immunity. J Immunol 172:6290–6297 [CrossRef]
    [Google Scholar]
  6. Bergelson J. M., Cunningham J. A., Droguett G., Kurt-Jones E. A., Krithivas A., Hong J. S., Horwitz M. S., Crowell R. L., Finberg R. W. 1997; Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5. Science 275:1320–1323 [CrossRef]
    [Google Scholar]
  7. Bewley M. C., Springer K., Zhang Y. B., Freimuth P., Flanagan J. M. 1999; Structural analysis of the mechanism of adenovirus binding to its human cellular receptor, CAR. Science 286:1579–1583 [CrossRef]
    [Google Scholar]
  8. Burmeister W. P., Guilligay D., Cusack S., Wadell G., Arnberg N. 2004; Crystal structure of species D adenovirus fiber knobs and their sialic acid binding sites. J Virol 78:7727–7736 [CrossRef]
    [Google Scholar]
  9. Crawford-Miksza L., Schnurr D. P. 1996; Seroepidemiology of new AIDS-associated adenoviruses among the San Francisco Men's Health Study. J Med Virol 50:230–236 [CrossRef]
    [Google Scholar]
  10. De Jong J. C., Wermenbol A. G., Verweij-Uijterwaal M. W., Slaterus K. W., Wertheim-Van Dillen P., Van Doornum G. J., Khoo S. H., Hierholzer J. C. 1999; Adenoviruses from human immunodeficiency virus-infected individuals, including two strains that represent new candidate serotypes Ad50 and Ad51 of species B1 and D, respectively. J Clin Microbiol 37:3940–3945
    [Google Scholar]
  11. Deryckere F., Burgert H. G. 1996; Early region 3 of adenovirus type 19 (subgroup D) encodes an HLA-binding protein distinct from that of subgroups B and C. J Virol 70:2832–2841
    [Google Scholar]
  12. Fallaux F. J., Bout A., van der Velde I. & 9 other authors 1998; New helper cells and matched early region 1-deleted adenovirus vectors prevent generation of replication-competent adenoviruses. Hum Gene Ther 9:1909–1917 [CrossRef]
    [Google Scholar]
  13. Gaggar A., Shayakhmetov D. M., Lieber A. 2003; CD46 is a cellular receptor for group B adenoviruses. Nat Med 9:1408–1412 [CrossRef]
    [Google Scholar]
  14. Goodrum F. D., Shenk T., Ornelles D. A. 1996; Adenovirus early region 4 34-kilodalton protein directs the nuclear localization of the early region 1B 55-kilodalton protein in primate cells. J Virol 70:6323–6335
    [Google Scholar]
  15. Havenga M., Vogels R., Zuijdgeest D. & 16 other authors 2006; Novel replication-incompetent adenoviral B-group vectors: high vector stability and yield in PER.C6 cells. J Gen Virol 87:2135–2143 [CrossRef]
    [Google Scholar]
  16. Hierholzer J. C. 1992; Adenoviruses in the immunocompromised host. Clin Microbiol Rev 5:262–274
    [Google Scholar]
  17. Hierholzer J. C., Wigand R., Anderson L. J., Adrian T., Gold J. W. 1988; Adenoviruses from patients with AIDS: a plethora of serotypes and a description of five new serotypes of subgenus D (types 43-47). J Infect Dis 158:804–813 [CrossRef]
    [Google Scholar]
  18. Holterman L., Vogels R., van der Vlugt R. & 15 other authors 2004; Novel replication-incompetent vector derived from adenovirus type 11 (Ad11) for vaccination and gene therapy: low seroprevalence and non-cross-reactivity with Ad5. J Virol 78:13207–13215 [CrossRef]
    [Google Scholar]
  19. Kirby I., Lord R., Davison E., Wickham T. J., Roelvink P. W., Kovesdi I., Sutton B. J., Santis G. 2001; Adenovirus type 9 fiber knob binds to the coxsackie B virus-adenovirus receptor (CAR) with lower affinity than fiber knobs of other CAR-binding adenovirus serotypes. J Virol 75:7210–7214 [CrossRef]
    [Google Scholar]
  20. Kostense S., Koudstaal W., Sprangers M. & 8 other authors 2004; Adenovirus types 5 and 35 seroprevalence in AIDS risk groups supports type 35 as a vaccine vector. AIDS 18:1213–1216 [CrossRef]
    [Google Scholar]
  21. Lemckert A. A., Sumida S. M., Holterman L. 10 other authors 2005; Immunogenicity of heterologous prime-boost regimens involving recombinant adenovirus serotype 11 (Ad11) and Ad35 vaccine vectors in the presence of anti-ad5 immunity. J Virol 79:9694–9701 [CrossRef]
    [Google Scholar]
  22. Ophorst O. J. A. E., Radosevic K., Havenga M. J. E., Pau M. G., Holterman L., Berkhout B., Goudsmit J., Tsuji M. 2006; Immunogenicity and protection of a recombinant human adenovirus serotype 35-based malaria vaccine against Plasmodium yoelii in mice. Infect Immun 74:313–320 [CrossRef]
    [Google Scholar]
  23. Roelvink P. W., Kovesdi I., Wickham T. J. 1996; Comparative analysis of adenovirus fiber-cell interaction: adenovirus type 2 (Ad2) and Ad9 utilize the same cellular fiber receptor but use different binding strategies for attachment. J Virol 70:7614–7621
    [Google Scholar]
  24. Roelvink P. W., Lizonova A., Lee J. G., Li Y., Bergelson J. M., Finberg R. W., Brough D. E., Kovesdi I., Wickham T. J. 1998; The coxsackievirus-adenovirus receptor protein can function as a cellular attachment protein for adenovirus serotypes from subgroups A, C, D, E, and F.. J Virol 72:7909–7915
    [Google Scholar]
  25. Roelvink P. W., Mi Lee G., Einfeld D. A., Kovesdi I., Wickham T. J. 1999; Identification of a conserved receptor-binding site on the fiber proteins of CAR-recognizing Adenoviridae . Science 286:1568–1571 [CrossRef]
    [Google Scholar]
  26. Schnurr D., Dondero M. E. 1993; Two new candidate adenovirus serotypes. Intervirology 36:79–83
    [Google Scholar]
  27. Segerman A., Atkinson J. P., Marttila M., Dennerquist V., Wadell G., Arnberg N. 2003; Adenovirus type 11 uses CD46 as a cellular receptor. J Virol 77:9183–9191 [CrossRef]
    [Google Scholar]
  28. Shayakhmetov D. M., Lieber A. 2000; Dependence of adenovirus infectivity on length of the fiber shaft domain. J Virol 74:10274–10286 [CrossRef]
    [Google Scholar]
  29. Sirena D., Lilienfeld B., Eisenhut M. & 8 other authors 2004; The human membrane cofactor CD46 is a receptor for species B adenovirus serotype 3. J Virol 78:4454–4462 [CrossRef]
    [Google Scholar]
  30. Sprangers M. C., Lakhai W., Koudstaal W., Verhoeven M., Koel B. F., Vogels R., Goudsmit J., Havenga M. J., Kostense S. 2003; Quantifying adenovirus-neutralizing antibodies by luciferase transgene detection: addressing preexisting immunity to vaccine and gene therapy vectors. J Clin Microbiol 41:5046–5052 [CrossRef]
    [Google Scholar]
  31. Stanley P., Siminovitch L. 1977; Complementation between mutants of CHO cells resistant to a variety of plant lectins. Somatic Cell Genet 3:391–405 [CrossRef]
    [Google Scholar]
  32. Sullivan N. J., Geisbert T. W., Geisbert J. B., Xu L., Yang Z. Y., Roederer M., Koup R. A., Jahrling P. B., Nabel G. J. 2003; Accelerated vaccination for Ebola virus haemorrhagic fever in non-human primates. Nature 424:681–684 [CrossRef]
    [Google Scholar]
  33. Toogood C. I., Crompton J., Hay R. T. 1992; Antipeptide antisera define neutralizing epitopes on the adenovirus hexon. J Gen Virol 73:1429–1435 [CrossRef]
    [Google Scholar]
  34. Verhaagh S., de Jong E., Goudsmit J. & 14 other authors 2006; Human CD46-transgenic mice in studies involving replication-incompetent adenoviral type 35 vectors. J Gen Virol 87:255–265 [CrossRef]
    [Google Scholar]
  35. Vogels R., Zuijdgeest D., van Rijnsoever R. & 20 other authors 2003; Replication-deficient human adenovirus type 35 vectors for gene transfer and vaccination: efficient human cell infection and bypass of preexisting adenovirus immunity. J Virol 77:8263–8271 [CrossRef]
    [Google Scholar]
  36. Weigel S., Dobbelstein M. 2000; The nuclear export signal within the E4orf6 protein of adenovirus type 5 supports virus replication and cytoplasmic accumulation of viral mRNA. J Virol 74:764–772 [CrossRef]
    [Google Scholar]
  37. Windheim M., Burgert H. G. 2002; Characterization of E3/49K, a novel, highly glycosylated E3 protein of the epidemic keratoconjunctivitis-causing adenovirus type 19a. J Virol 76:755–766 [CrossRef]
    [Google Scholar]
  38. Wohlfart C. 1988; Neutralization of adenoviruses: kinetics, stoichiometry, and mechanisms. J Virol 62:2321–2328
    [Google Scholar]
  39. Wu E., Pache L., Von Seggern D. J., Mullen T. M., Mikyas Y., Stewart P. L., Nemerow G. R. 2003; Flexibility of the adenovirus fiber is required for efficient receptor interaction. J Virol 77:7225–7235 [CrossRef]
    [Google Scholar]
  40. Wu E., Trauger S. A., Pache L., Mullen T. M., von Seggern D. J., Siuzdak G., Nemerow G. R. 2004; Membrane cofactor protein is a receptor for adenoviruses associated with epidemic keratoconjunctivitis. J Virol 78:3897–3905 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82079-0
Loading
/content/journal/jgv/10.1099/vir.0.82079-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error