1887

Abstract

Expression of the -encoded proteins of human immunodeficiency virus type 1 (HIV-1) requires a programmed –1 ribosomal frameshift at the junction of the and coding sequences. Frameshifting takes place at a heptanucleotide slippery sequence, UUUUUUA, and is enhanced by a stimulatory RNA structure located immediately downstream. In patients undergoing viral protease (PR) inhibitor therapy, a p1/p6 L449F cleavage site (CS) mutation is often observed in resistant isolates and frequently generates, at the nucleotide sequence level, a homopolymeric and potentially slippery sequence (UUUUCUU to UUUUUUU). The mutation is located within the stimulatory RNA downstream of the authentic slippery sequence and could act to augment levels of -encoded enzymes to counteract the PR deficit. Here, RNA secondary structure probing was employed to investigate the structure of a CS-containing frameshift signal, and the effect of this mutation on ribosomal frameshift efficiency and in tissue culture cells was determined. A second mutation, a GGG insertion in the loop of the stimulatory RNA that could conceivably lead to resistance by enhancing the activity of the structure, was also tested. It was found, however, that the CS and GGG mutations had only a very modest effect on the structure and activity of the HIV-1 frameshift signal. Thus the increased resistance to viral protease inhibitors seen with HIV-1 isolates containing mutations in the frameshifting signal is unlikely to be accounted for solely by enhancement of frameshift efficiency.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82064-0
2007-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/1/226.html?itemId=/content/journal/jgv/10.1099/vir.0.82064-0&mimeType=html&fmt=ahah

References

  1. Arnvig K. B., Pennell S., Gopal B., Colston M. J. 2004; A high-affinity interaction between NusA and the rrn nut site in Mycobacterium tuberculosis . Proc Natl Acad Sci U S A 101:8325–8330 [CrossRef]
    [Google Scholar]
  2. Atkins J. F., Baranov P. V., Fayet O., Herr A. J., Howard M. T., Ivanov I. P., Matsufuji S., Miller W. A., Moore B. other authors 2001; Overriding standard decoding: implications of recoding for ribosome function and enrichment of gene expression. Cold Spring Harb Symp Quant Biol 66:217–232 [CrossRef]
    [Google Scholar]
  3. Bally F., Martinez R., Peters S., Sudre P., Telenti A. 2000; Polymorphism of HIV type 1 gag p7/p1 and p1/p6 cleavage sites: clinical significance and implications for resistance to protease inhibitors. AIDS Res Hum Retroviruses 16:1209–1213 [CrossRef]
    [Google Scholar]
  4. Bidou L., Stahl G., Grima B., Liu H., Cassan M., Rousset J. P. 1997; In vivo HIV-1 frameshifting efficiency is directly related to the stability of the stem-loop stimulatory signal. RNA 3:1153–1158
    [Google Scholar]
  5. Brierley I., Dos Ramos F. J. 2005; Programmed ribosomal frameshifting in HIV-1 and the SARS-CoV. Virus Res 119:29–42
    [Google Scholar]
  6. Brierley I., Boursnell M. E., Binns M. M., Bilimoria B., Blok V. C., Brown T. D., Inglis S. C. 1987; An efficient ribosomal frame-shifting signal in the polymerase-encoding region of the coronavirus IBV. EMBO J 6:3779–3785
    [Google Scholar]
  7. Brierley I., Digard P., Inglis S. C. 1989; Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell 57:537–547 [CrossRef]
    [Google Scholar]
  8. Brierley I., Jenner A. J., Inglis S. C. 1992; Mutational analysis of the “slippery-sequence” component of a coronavirus ribosomal frameshifting signal. J Mol Biol 227:463–479 [CrossRef]
    [Google Scholar]
  9. Carrillo A., Stewart K. D., Sham H. L., Norbeck D. W., Kohlbrenner W. E., Leonard J. M., Kempf D. J., Molla A. 1998; In vitro selection and characterization of human immunodeficiency virus type 1 variants with increased resistance to ABT-378, a novel protease inhibitor. J Virol 72:7532–7541
    [Google Scholar]
  10. Cen S., Niu M., Saadatmand J., Guo F., Huang Y., Nabel G. J., Kleiman L. 2004; Incorporation of pol into human immunodeficiency virus type 1 Gag virus-like particles occurs independently of the upstream Gag domain in Gag-pol. J Virol 78:1042–1049 [CrossRef]
    [Google Scholar]
  11. Cherry E., Liang C., Rong L., Quan Y., Inouye P., Li X., Morin N., Kotler M., Wainberg M. A. 1998; Characterization of human immunodeficiency virus type-1 (HIV-1) particles that express protease-reverse transcriptase fusion proteins. J Mol Biol 284:43–56 [CrossRef]
    [Google Scholar]
  12. Demirov D. G., Freed E. O. 2004; Retrovirus budding. Virus Res 106:87–102 [CrossRef]
    [Google Scholar]
  13. Dinman J. D., Richter S., Plant E. P., Taylor R. C., Hammell A. B., Rana T. M. 2002; The frameshift signal of HIV-1 involves a potential intramolecular triplex RNA structure. Proc Natl Acad Sci U S A 99:5331–5336 [CrossRef]
    [Google Scholar]
  14. Doyon L., Croteau G., Thibeault D., Poulin F., Pilote L., Lamarre D. 1996; Second locus involved in human immunodeficiency virus type 1 resistance to protease inhibitors. J Virol 70:3763–3769
    [Google Scholar]
  15. Doyon L., Payant C., Brakier-Gingras L., Lamarre D. 1998; Novel Gag-Pol frameshift site in human immunodeficiency virus type 1 variants resistant to protease inhibitors. J Virol 72:6146–6150
    [Google Scholar]
  16. Dulude D., Baril M., Brakier-Gingras L. 2002; Characterization of the frameshift stimulatory signal controlling a programmed −1 ribosomal frameshift in the human immunodeficiency virus type 1. Nucleic Acids Res 30:5094–5102 [CrossRef]
    [Google Scholar]
  17. Du Z., Giedroc D. P., Hoffman D. W. 1996; Structure of the autoregulatory pseudoknot within the gene 32 messenger RNA of bacteriophages T2 and T6: a model for a possible family of structurally related RNA pseudoknots. Biochemistry 35:4187–4198 [CrossRef]
    [Google Scholar]
  18. Feher A., Weber I. T., Bagossi P., Boross P., Mahalingam B., Louis J. M., Copeland T. D., Torshin I. Y., Harrison R. W., Tozser J. 2002; Effect of sequence polymorphism and drug resistance on two HIV-1 Gag processing sites. Eur J Biochem 269:4114–4120 [CrossRef]
    [Google Scholar]
  19. Gaudin C., Mazauric M. H., Traikia M., Guittet E., Yoshizawa S., Fourmy D. 2005; Structure of the RNA signal essential for translational frameshifting in HIV-1. J Mol Biol 349:1024–1035 [CrossRef]
    [Google Scholar]
  20. Gottlinger H. G., Dorfman T., Sodroski J. G., Haseltine W. A. 1991; Effect of mutations affecting the p6 gag protein on human immunodeficiency virus particle release. Proc Natl Acad Sci U S A 88:3195–3199 [CrossRef]
    [Google Scholar]
  21. Grentzmann G., Ingram J. A., Kelly P. J., Gesteland R. F., Atkins J. F. 1998; A dual-luciferase reporter system for studying recoding signals. RNA 4:479–486
    [Google Scholar]
  22. Hill M. K., Shehu-Xhilaga M., Crowe S. M., Mak J. 2002; Proline residues within spacer peptide p1 are important for human immunodeficiency virus type 1 infectivity, protein processing, and genomic RNA dimer stability. J Virol 76:11245–11253 [CrossRef]
    [Google Scholar]
  23. Jacks T., Power M. D., Masiarz F. R., Luciw P. A., Barr P. J., Varmus H. E. 1988; Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature 331:280–283 [CrossRef]
    [Google Scholar]
  24. Jovine L., Hainz T., Oubridge C., Nagai K. 2000; Crystallization and preliminary X-ray analysis of the conserved domain IV of Escherichia coli 4.5S RNA. Acta Crystallogr D Biol Crystallogr 56:1033–1037 [CrossRef]
    [Google Scholar]
  25. Karacostas V., Wolffe E. J., Nagashima K., Gond M. A., Moss B. 1993; Overexpression of the HIV-1 gag-pol polyprotein results in intracellular activation of HIV-1 protease and inhibition of assembly and budding of virus-like particles. Virology 193:661–671 [CrossRef]
    [Google Scholar]
  26. Kunkel T. A. 1985; Rapid and efficient site specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A 82:488–492 [CrossRef]
    [Google Scholar]
  27. Le S. Y., Shapiro B. A., Chen J. H., Nussinov R., Maizel J. V. 1991; RNA pseudoknots downstream of the frameshift sites of retroviruses. Genet Anal Tech Appl 8:191–205 [CrossRef]
    [Google Scholar]
  28. Louis J. M., Dyda F., Nashed N. T., Kimmel A. R., Davies D. R. 1998; Hydrophilic peptides derived from the transframe region of Gag-Pol inhibit the HIV-1 protease. Biochemistry 37:2105–2110 [CrossRef]
    [Google Scholar]
  29. Louis J. M., Clore G. M., Gronenborn A. M. 1999a; Autoprocessing of HIV-1 protease is tightly coupled to protein folding. Nat Struct Biol 6:868–875 [CrossRef]
    [Google Scholar]
  30. Louis J. M., Wondrak E. M., Kimmel A. R., Wingfield P. T., Nashed N. T. 1999b; Proteolytic processing of HIV-1 protease precursor, kinetics and mechanism. J Biol Chem 274:23437–23442 [CrossRef]
    [Google Scholar]
  31. Maguire M. F., Guinea R., Griffin P., Macmanus S., Elston R. C., Wolfram J., Richards N., Hanlon M. H., Porter D. J. other authors 2002; Changes in human immunodeficiency virus type 1 Gag at positions L449 and P453 are linked to I50V protease mutants in vivo and cause reduction of sensitivity to amprenavir and improved viral fitness in vitro. J Virol 76:7398–7406 [CrossRef]
    [Google Scholar]
  32. Manktelow E., Shigemoto K., Brierley I. 2005; Characterization of the frameshift signal of Edr, a mammalian example of programmed −1 ribosomal frameshifting. Nucleic Acids Res 33:1553–1563 [CrossRef]
    [Google Scholar]
  33. Melton D. A., Krieg P. A., Rebagliati M. R., Maniatis T., Zinn K., Green M. R. 1984; Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res 12:7035–7056 [CrossRef]
    [Google Scholar]
  34. Morita E., Sundquist W. I. 2004; Retrovirus budding. Annu Rev Cell Dev Biol 20:395–425 [CrossRef]
    [Google Scholar]
  35. Park J., Morrow C. D. 1991; Overexpression of the gag-pol precursor from human immunodeficiency virus type 1 proviral genomes results in efficient proteolytic processing in the absence of virion production. J Virol 65:5111–5117
    [Google Scholar]
  36. Paulus C., Hellebrand S., Tessmer U., Wolf H., Krausslich H. G., Wagner R. 1999; Competitive inhibition of human immunodeficiency virus type-1 protease by the Gag-Pol transframe protein. J Biol Chem 274:21539–21543 [CrossRef]
    [Google Scholar]
  37. Peters S., Munoz M., Yerly S., Sanchez-Merino V., Lopez-Galindez C., Perrin L., Larder B., Cmarko D., Fakan S. other authors 2001; Resistance to nucleoside analog reverse transcriptase inhibitors mediated by human immunodeficiency virus type 1 p6 protein. J Virol 75:9644–9653 [CrossRef]
    [Google Scholar]
  38. Polson A. G., Bass B. L. 1994; Preferential selection of adenosines for modification by double-stranded RNA adenosine deaminase. EMBO J 13:5701–5711
    [Google Scholar]
  39. Robinson L. H., Gale C. V., Kleim J. P. 2002; Inclusion of full length human immunodeficiency virus type 1 (HIV-1) gag sequences in viral recombinants applied to drug susceptibility phenotyping. J Virol Methods 104:147–160 [CrossRef]
    [Google Scholar]
  40. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467 [CrossRef]
    [Google Scholar]
  41. Shehu-Xhilaga M., Crowe S. M., Mak J. 2001; Maintenance of the Gag/Gag-Pol ratio is important for human immunodeficiency virus type 1 RNA dimerization and viral infectivity. J Virol 75:1834–1841 [CrossRef]
    [Google Scholar]
  42. Staple D. W., Butcher S. E. 2003; Solution structure of the HIV-1 frameshift inducing stem-loop RNA. Nucleic Acids Res 31:4326–4331 [CrossRef]
    [Google Scholar]
  43. Staple D. W., Butcher S. E. 2005; Solution structure and thermodynamic investigation of the HIV-1 frameshift inducing element. J Mol Biol 349:1011–1023 [CrossRef]
    [Google Scholar]
  44. Telenti A., Martinez R., Munoz M., Bleiber G., Greub G., Sanglard D., Peters S. 2002; Analysis of natural variants of the human immunodeficiency virus type 1 gag-pol frameshift stem–loop structure. J Virol 76:7868–7873 [CrossRef]
    [Google Scholar]
  45. Tibbles K. W., Brierley I., Cavanagh D., Brown T. D. K. 1995; A region of the coronavirus infectious bronchitis virus 1a polyprotein encoding the 3C-like protease domain is subject to rapid turnover when expressed in rabbit reticulocyte lysate. J Gen Virol 76:3059–3070 [CrossRef]
    [Google Scholar]
  46. Turner D. H., Sugimoto N., Freier S. M. 1988; RNA structure prediction. Annu Rev Biophys Biophys Chem 17:167–192 [CrossRef]
    [Google Scholar]
  47. van Belkum A., Verlaan P., Kun J. B., Pleij C., Bosch L. 1988; Temperature dependent chemical and enzymatic probing of the tRNA-like structure of TYMV RNA. Nucleic Acids Res 16:1931–1950 [CrossRef]
    [Google Scholar]
  48. Whitehurst N., Chappey C., Petropoulos C., Parkin N., Gamarnik A. 2003; Polymorphisms in p1-p6/p6* of HIV type 1 can delay protease autoprocessing and increase drug susceptibility. AIDS Res Hum Retroviruses 19:779–784 [CrossRef]
    [Google Scholar]
  49. Wyatt J. R., Puglisi J. D., Tinoco I., Jr. 1990; RNA pseudoknots. Stability and loop size requirements. J Mol Biol 214:455–470 [CrossRef]
    [Google Scholar]
  50. Zhang Y. M., Imamichi H., Imamichi T., Lane H. C., Falloon J., Vasudevachari M. B., Salzman N. P. 1997; Drug resistance during indinavir therapy is caused by mutations in the protease gene and in its Gag substrate cleavage sites. J Virol 71:6662–6670
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82064-0
Loading
/content/journal/jgv/10.1099/vir.0.82064-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error