1887

Abstract

Chronic hepatitis C is often associated with oxidative stress. (HCV) utilizes an internal ribosome entry site (IRES) element for translation, in contrast to cap-dependent translation of the majority of cellular proteins. To understand how virus translation is modulated under oxidative stress, HCV IRES-mediated translation was compared with cap-dependent translation using a bicistronic reporter construct and hydrogen peroxide (HO) as a stress inducer. In HO-sensitive HeLa cells, HO repressed translation in a time- and dose-dependent manner, concomitant with the kinetics of eIF2 phosphorylation. A phosphomimetic of eIF2, which mimics the structure of the phosphorylated eIF2, was sufficient to repress translation in the absence of HO. In HO-resistant HepG2 cells, HO activated both HCV IRES-mediated and cap-dependent translation, associated with an increased level of phospho-eIF2. It was postulated that HO might stimulate translation in HepG2 cells via an eIF2-independent mechanism, whereas the simultaneous phosphorylation of eIF2 repressed part of the translational activities. Indeed, the translational repression was released in the presence of a non-phosphorylatable mutant, eIF2-SA, resulting in further enhancement of both translational activities after exposure to HO. In HuH7 cells, which exhibited an intermediate level of sensitivity towards HO, both HCV IRES-mediated and cap-dependent translational activities were upregulated after treatment with various doses of HO, but the highest level of induction was achieved with a low level of HO, which may represent the physiological level of HO. At this level, the HCV IRES-mediated translation was preferentially upregulated compared with cap-dependent translation.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82051-0
2006-11-01
2019-11-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/11/3251.html?itemId=/content/journal/jgv/10.1099/vir.0.82051-0&mimeType=html&fmt=ahah

References

  1. Ali, N. & Siddiqui, A. ( 1995; ). Interaction of polypyrimidine tract-binding protein with the 5′-noncoding region of the hepatitis C virus RNA genome and its functional requirement in internal initiation of translation. J Virol 69, 6367–6375.
    [Google Scholar]
  2. Ali, N. & Siddiqui, A. ( 1997; ). The La antigen binds 5′ noncoding region of the hepatitis C virus RNA in the context of the initiator AUG codon and stimulates internal ribosome entry site-mediated translation. Proc Natl Acad Sci U S A 94, 2249–2254.[CrossRef]
    [Google Scholar]
  3. Beales, L. P., Holzenburg, A. & Rowlands, D. J. ( 2003; ). Viral internal ribosome entry site structures segregate into two distinct morphologies. J Virol 77, 6574–6579.[CrossRef]
    [Google Scholar]
  4. Belsham, G. J. & Sonenberg, N. ( 1996; ). RNA–protein interactions in regulation of picornavirus RNA translation. Microbiol Rev 60, 499–511.
    [Google Scholar]
  5. Boni, S., Lavergne, J.-P., Boulant, S. & Cahour, A. ( 2005; ). Hepatitis C virus core protein acts as a trans-modulating factor on internal translation initiation of the viral RNA. J Biol Chem 280, 17737–17748.[CrossRef]
    [Google Scholar]
  6. Bureau, C., Bernad, J., Chaouche, N., Orfila, C., Béraud, M., Gonindard, C., Alric, L., Vinel, J.-P. & Pipy, B. ( 2001; ). Nonstructural 3 protein of hepatitis C virus triggers an oxidative burst in human monocytes via activation of NADPH oxidase. J Biol Chem 276, 23077–23083.[CrossRef]
    [Google Scholar]
  7. Chan, S.-W. & Egan, P. A. ( 2005; ). Hepatitis C virus envelope proteins regulate CHOP via induction of the unfolded protein response. FASEB J 19, 1510–1512.
    [Google Scholar]
  8. Choi, S.-Y., Scherer, B. J., Schnier, J., Davies, M. V., Kaufman, R. J. & Hershey, J. W. B. ( 1992; ). Stimulation of protein synthesis in COS cells transfected with variants of the α-subunit of initiation factor eIF-2. J Biol Chem 267, 286–293.
    [Google Scholar]
  9. Choi, J., Lee, K. J., Zheng, Y., Yamaga, A. K., Lai, M. M. C. & Ou, J.-H. ( 2004; ). Reactive oxygen species suppress hepatitis C virus RNA replication in human hepatoma cells. Hepatology 39, 81–89.[CrossRef]
    [Google Scholar]
  10. Collier, A. J., Tang, S. & Elliott, R. M. ( 1998; ). Translation efficiencies of the 5′ untranslated region from representatives of the six major genotypes of hepatitis C virus using a novel bicistronic reporter assay system. J Gen Virol 79, 2359–2366.
    [Google Scholar]
  11. Davies, K. J. A. ( 1999; ). The broad spectrum of responses to oxidants in proliferating cells: a new paradigm for oxidative stress. IUBMB Life 48, 41–47.[CrossRef]
    [Google Scholar]
  12. De Maria, N., Colantoni, A., Fagiuoli, S., Liu, G.-J., Rogers, B. K., Farinati, F., VanThiel, D. H. & Floyd, R. A. ( 1996; ). Association between reactive oxygen species and disease activity in chronic hepatitis C. Free Radic Biol Med 21, 291–295.[CrossRef]
    [Google Scholar]
  13. Dhillon, A. P. & Dusheiko, G. M. ( 1995; ). Pathology of hepatitis C virus infection. Histopathology 26, 297–309.[CrossRef]
    [Google Scholar]
  14. Dumas, E., Staedel, C., Colombat, M., Reigadas, S., Chabas, S., Astier-Gin, T., Cahour, A., Litvak, S. & Ventura, M. ( 2003; ). A promoter activity is present in the DNA sequence corresponding to the hepatitis C virus 5′ UTR. Nucleic Acids Res 31, 1275–1281.[CrossRef]
    [Google Scholar]
  15. Fernandez, J., Bode, B., Koromilas, A., Diehl, J. A., Krukovets, I., Snider, M. D. & Hatzoglou, M. ( 2002a; ). Translation mediated by the internal ribosome entry site of the cat-1 mRNA is regulated by glucose availability in a PERK kinase-dependent manner. J Biol Chem 277, 11780–11787.[CrossRef]
    [Google Scholar]
  16. Fernandez, J., Yaman, I., Sarnow, P., Snider, M. D. & Hatzoglou, M. ( 2002b; ). Regulation of internal ribosomal entry site-mediated translation by phosphorylation of the translation initiation factor eIF2α. J Biol Chem 277, 19198–19205.[CrossRef]
    [Google Scholar]
  17. Gerlitz, G., Jagus, R. & Elroy-Stein, O. ( 2002; ). Phosphorylation of initiation factor-2α is required for activation of internal translation initiation during cell differentiation. Eur J Biochem 269, 2810–2819.[CrossRef]
    [Google Scholar]
  18. Gong, G., Waris, G., Tanveer, R. & Siddiqui, A. ( 2001; ). Human hepatitis C virus NS5A protein alters intracellular calcium levels, induces oxidative stress, and activates STAT-3 and NF-κB. Proc Natl Acad Sci U S A 98, 9599–9604.[CrossRef]
    [Google Scholar]
  19. Han, B. & Zhang, J.-T. ( 2002; ). Regulation of gene expression by internal ribosome entry sites or cryptic promoters: the eIF4G story. Mol Cell Biol 22, 7372–7384.[CrossRef]
    [Google Scholar]
  20. He, Y., Yan, W., Coito, C., Li, Y., Gale, M., Jr & Katze, M. G. ( 2003; ). The regulation of hepatitis C virus (HCV) internal ribosome-entry site-mediated translation by HCV replicons and nonstructural proteins. J Gen Virol 84, 535–543.[CrossRef]
    [Google Scholar]
  21. Hellen, C. U. T. & Sarnow, P. ( 2001; ). Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev 15, 1593–1612.[CrossRef]
    [Google Scholar]
  22. Holcik, M., Sonenberg, N. & Korneluk, R. G. ( 2000; ). Internal ribosome initiation of translation and the control of cell death. Trends Genet 16, 469–473.[CrossRef]
    [Google Scholar]
  23. Ito, T., Tahara, S. M. & Lai, M. M. C. ( 1998; ). The 3′-untranslated region of hepatitis C virus RNA enhances translation from an internal ribosomal entry site. J Virol 72, 8789–8796.
    [Google Scholar]
  24. Kalliampakou, K. I., Kalamvoki, M. & Mavromara, P. ( 2005; ). Hepatitis C virus (HCV) NS5A protein downregulates HCV IRES-dependent translation. J Gen Virol 86, 1015–1025.[CrossRef]
    [Google Scholar]
  25. Kato, N., Hijikata, M., Ootsuyama, Y., Nakagawa, M., Ohkoshi, S., Sugimura, T. & Shimotonho, K. ( 1990; ). Molecular cloning of the human hepatitis C virus genome from Japanese patients with non-A, non-B hepatitis. Proc Natl Acad Sci U S A 87, 9524–9528.[CrossRef]
    [Google Scholar]
  26. Korenaga, M., Wang, T., Li, Y., Showalter, L. A., Chan, T., Sun, J. & Weinman, S. A. ( 2005; ). Hepatitis C virus core protein inhibits mitochondrial electron transport and increases reactive oxygen species (ROS) production. J Biol Chem 280, 37481–37488.[CrossRef]
    [Google Scholar]
  27. Koumenis, C., Naczki, C., Koritzinsky, M., Rastani, S., Diehl, A., Sonenberg, N., Koromilas, A. & Wouters, B. G. ( 2002; ). Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2α. Mol Cell Biol 22, 7405–7416.[CrossRef]
    [Google Scholar]
  28. Krüger, M., Beger, C., Li, Q.-X., Welch, P. J., Tritz, R., Leavitt, M., Barber, J. R. & Wong-Staal, F. ( 2000; ). Identification of eIF2Bγ and eIF2γ as cofactors of hepatitis C virus internal ribosome entry site-mediated translation using a functional genomics approach. Proc Natl Acad Sci U S A 97, 8566–8571.[CrossRef]
    [Google Scholar]
  29. Lauer, G. M. & Walker, B. D. ( 2001; ). Hepatitis C virus infection. N Engl J Med 345, 41–52.[CrossRef]
    [Google Scholar]
  30. Li, D., Takyar, S. T., Lott, W. B. & Gowans, E. J. ( 2003; ). Amino acids 1–20 of the hepatitis C virus (HCV) core protein specifically inhibit HCV IRES-dependent translation in HepG2 cells, and inhibit both HCV IRES-mediated and cap-dependent translation in HuH7 and CV-1 cells. J Gen Virol 84, 815–825.[CrossRef]
    [Google Scholar]
  31. Lohmann, V., Körner, F., Koch, J.-O., Herian, U., Theilmann, L. & Bartenschlager, R. ( 1999; ). Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285, 110–113.[CrossRef]
    [Google Scholar]
  32. Moradpour, D., Brass, V., Gosert, R., Wölk, B. & Blum, H. E. ( 2002; ). Hepatitis C: molecular virology and antiviral targets. Trends Mol Med 8, 476–482.[CrossRef]
    [Google Scholar]
  33. Moriya, K., Nakagawa, K., Santa, T. & 11 other authors ( 2001; ). Oxidative stress in the absence of inflammation in a mouse model for hepatitis C virus-associated hepatocarcinogenesis. Cancer Res 61, 4365–4370.
    [Google Scholar]
  34. Novoa, I., Zeng, H., Harding, H. P. & Ron, D. ( 2001; ). Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2α. J Cell Biol 153, 1011–1022.[CrossRef]
    [Google Scholar]
  35. Okuda, M., Li, K., Beard, M. R., Showalter, L. A., Scholle, F., Lemon, S. M. & Weinman, S. A. ( 2002; ). Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein. Gastroenterology 122, 366–375.[CrossRef]
    [Google Scholar]
  36. O'Loghlen, A., Pérez-Morgado, M. I., Salinas, M. & Martín, M. E. ( 2003; ). Reversible inhibition of the protein phosphatase 1 by hydrogen peroxide. Potential regulation of eIF2α phosphorylation in differentiated PC12 cells. Arch Biochem Biophys 417, 194–202.[CrossRef]
    [Google Scholar]
  37. Paradis, V., Mathurin, P., Kollinger, M. & 7 other authors ( 1997; ). In situ detection of lipid peroxidation in chronic hepatitis C: correlation with pathological features. J Clin Pathol 50, 401–406.[CrossRef]
    [Google Scholar]
  38. Pestova, T. V., Shatsky, I. N., Fletcher, S. P., Jackson, R. T. & Hellen, C. U. T. ( 1998; ). A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitis C and classical swine fever virus RNAs. Genes Dev 12, 67–83.[CrossRef]
    [Google Scholar]
  39. Qadri, I., Iwahashi, M., Capasso, J. M., Hopken, M. W., Flores, S., Schaack, J. & Simon, F. R. ( 2004; ). Induced oxidative stress and activated expression of manganese superoxide dismutase during hepatitis C virus replication: role of JNK, p38 MAPK and AP-1. Biochem J 378, 919–928.[CrossRef]
    [Google Scholar]
  40. Reynolds, J. E., Kaminski, A., Kettinen, H. J., Grace, K., Clarke, B. E., Carroll, A. R., Rowlands, D. J. & Jackson, R. J. ( 1995; ). Unique features of internal initiation of hepatitis C virus RNA translation. EMBO J 14, 6010–6020.
    [Google Scholar]
  41. Rivas-Estilla, A. M., Svitkin, Y., Lastra, M. L., Hatzoglou, M., Sherker, A. & Koromilas, A. E. ( 2002; ). PKR-dependent mechanisms of gene expression from a subgenomic hepatitis C virus clone. J Virol 76, 10637–10653.[CrossRef]
    [Google Scholar]
  42. Schwarz, K. B. ( 1996; ). Oxidative stress during viral infection: a review. Free Radic Biol Med 21, 641–649.[CrossRef]
    [Google Scholar]
  43. Sherrill, K. W., Byrd, M. P., Van Eden, M. E. & Lloyd, R. E. ( 2004; ). BCL-2 translation is mediated via internal ribosome entry during cell stress. J Biol Chem 279, 29066–29074.[CrossRef]
    [Google Scholar]
  44. Tsukiyama-Kohara, K., Iizuka, N., Kohara, M. & Nomoto, A. ( 1992; ). Internal ribosome entry site within hepatitis C virus RNA. J Virol 66, 1476–1483.
    [Google Scholar]
  45. Van Eden, M. E., Byrd, M. P., Sherrill, K. W. & Lloyd, R. E. ( 2004a; ). Demonstrating internal ribosome entry sites in eukaryotic mRNAs using stringent RNA test procedures. RNA 10, 720–730.[CrossRef]
    [Google Scholar]
  46. Van Eden, M. E., Byrd, M. P., Sherrill, K. W. & Lloyd, R. E. ( 2004b; ). Translation of cellular inhibitor of apoptosis protein 1 (c-IAP1) mRNA is IRES mediated and regulated during cell stress. RNA 10, 469–481.[CrossRef]
    [Google Scholar]
  47. Wakita, T., Pietschmann, T., Kato, T. & 9 other authors ( 2005; ). Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med 11, 791–796.[CrossRef]
    [Google Scholar]
  48. Wang, H. & Joseph, J. A. ( 1999; ). Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 27, 612–616.[CrossRef]
    [Google Scholar]
  49. Yamashita, T., Kaneko, S., Hashimato, S., Sato, T., Nagai, S., Toyoda, N., Suzuki, T., Kobayashi, K. & Matsushima, K. ( 2001; ). Serial analysis of gene expression in chronic hepatitis C and hepatocellular carcinoma. Biochem Biophys Res Commun 282, 647–654.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82051-0
Loading
/content/journal/jgv/10.1099/vir.0.82051-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error