1887

Abstract

Chronic hepatitis C is often associated with oxidative stress. (HCV) utilizes an internal ribosome entry site (IRES) element for translation, in contrast to cap-dependent translation of the majority of cellular proteins. To understand how virus translation is modulated under oxidative stress, HCV IRES-mediated translation was compared with cap-dependent translation using a bicistronic reporter construct and hydrogen peroxide (HO) as a stress inducer. In HO-sensitive HeLa cells, HO repressed translation in a time- and dose-dependent manner, concomitant with the kinetics of eIF2 phosphorylation. A phosphomimetic of eIF2, which mimics the structure of the phosphorylated eIF2, was sufficient to repress translation in the absence of HO. In HO-resistant HepG2 cells, HO activated both HCV IRES-mediated and cap-dependent translation, associated with an increased level of phospho-eIF2. It was postulated that HO might stimulate translation in HepG2 cells via an eIF2-independent mechanism, whereas the simultaneous phosphorylation of eIF2 repressed part of the translational activities. Indeed, the translational repression was released in the presence of a non-phosphorylatable mutant, eIF2-SA, resulting in further enhancement of both translational activities after exposure to HO. In HuH7 cells, which exhibited an intermediate level of sensitivity towards HO, both HCV IRES-mediated and cap-dependent translational activities were upregulated after treatment with various doses of HO, but the highest level of induction was achieved with a low level of HO, which may represent the physiological level of HO. At this level, the HCV IRES-mediated translation was preferentially upregulated compared with cap-dependent translation.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82051-0
2006-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/11/3251.html?itemId=/content/journal/jgv/10.1099/vir.0.82051-0&mimeType=html&fmt=ahah

References

  1. Ali N., Siddiqui A. 1995; Interaction of polypyrimidine tract-binding protein with the 5′-noncoding region of the hepatitis C virus RNA genome and its functional requirement in internal initiation of translation. J Virol 69:6367–6375
    [Google Scholar]
  2. Ali N., Siddiqui A. 1997; The La antigen binds 5′ noncoding region of the hepatitis C virus RNA in the context of the initiator AUG codon and stimulates internal ribosome entry site-mediated translation. Proc Natl Acad Sci U S A 94:2249–2254 [CrossRef]
    [Google Scholar]
  3. Beales L. P., Holzenburg A., Rowlands D. J. 2003; Viral internal ribosome entry site structures segregate into two distinct morphologies. J Virol 77:6574–6579 [CrossRef]
    [Google Scholar]
  4. Belsham G. J., Sonenberg N. 1996; RNA–protein interactions in regulation of picornavirus RNA translation. Microbiol Rev 60:499–511
    [Google Scholar]
  5. Boni S., Lavergne J.-P., Boulant S., Cahour A. 2005; Hepatitis C virus core protein acts as a trans -modulating factor on internal translation initiation of the viral RNA. J Biol Chem 280:17737–17748 [CrossRef]
    [Google Scholar]
  6. Bureau C., Bernad J., Chaouche N., Orfila C., Béraud M., Gonindard C., Alric L., Vinel J.-P., Pipy B. 2001; Nonstructural 3 protein of hepatitis C virus triggers an oxidative burst in human monocytes via activation of NADPH oxidase. J Biol Chem 276:23077–23083 [CrossRef]
    [Google Scholar]
  7. Chan S.-W., Egan P. A. 2005; Hepatitis C virus envelope proteins regulate CHOP via induction of the unfolded protein response. FASEB J 19:1510–1512
    [Google Scholar]
  8. Choi S.-Y., Scherer B. J., Schnier J., Davies M. V., Kaufman R. J., Hershey J. W. B. 1992; Stimulation of protein synthesis in COS cells transfected with variants of the α -subunit of initiation factor eIF-2. J Biol Chem 267:286–293
    [Google Scholar]
  9. Choi J., Lee K. J., Zheng Y., Yamaga A. K., Lai M. M. C., Ou J.-H. 2004; Reactive oxygen species suppress hepatitis C virus RNA replication in human hepatoma cells. Hepatology 39:81–89 [CrossRef]
    [Google Scholar]
  10. Collier A. J., Tang S., Elliott R. M. 1998; Translation efficiencies of the 5′ untranslated region from representatives of the six major genotypes of hepatitis C virus using a novel bicistronic reporter assay system. J Gen Virol 79:2359–2366
    [Google Scholar]
  11. Davies K. J. A. 1999; The broad spectrum of responses to oxidants in proliferating cells: a new paradigm for oxidative stress. IUBMB Life 48:41–47 [CrossRef]
    [Google Scholar]
  12. De Maria N., Colantoni A., Fagiuoli S., Liu G.-J., Rogers B. K., Farinati F., VanThiel D. H., Floyd R. A. 1996; Association between reactive oxygen species and disease activity in chronic hepatitis C. Free Radic Biol Med 21:291–295 [CrossRef]
    [Google Scholar]
  13. Dhillon A. P., Dusheiko G. M. 1995; Pathology of hepatitis C virus infection. Histopathology 26:297–309 [CrossRef]
    [Google Scholar]
  14. Dumas E., Staedel C., Colombat M., Reigadas S., Chabas S., Astier-Gin T., Cahour A., Litvak S., Ventura M. 2003; A promoter activity is present in the DNA sequence corresponding to the hepatitis C virus 5′ UTR. Nucleic Acids Res 31:1275–1281 [CrossRef]
    [Google Scholar]
  15. Fernandez J., Bode B., Koromilas A., Diehl J. A., Krukovets I., Snider M. D., Hatzoglou M. 2002a; Translation mediated by the internal ribosome entry site of the cat-1 mRNA is regulated by glucose availability in a PERK kinase-dependent manner. J Biol Chem 277:11780–11787 [CrossRef]
    [Google Scholar]
  16. Fernandez J., Yaman I., Sarnow P., Snider M. D., Hatzoglou M. 2002b; Regulation of internal ribosomal entry site-mediated translation by phosphorylation of the translation initiation factor eIF2 α . J Biol Chem 277:19198–19205 [CrossRef]
    [Google Scholar]
  17. Gerlitz G., Jagus R., Elroy-Stein O. 2002; Phosphorylation of initiation factor-2 α is required for activation of internal translation initiation during cell differentiation. Eur J Biochem 269:2810–2819 [CrossRef]
    [Google Scholar]
  18. Gong G., Waris G., Tanveer R., Siddiqui A. 2001; Human hepatitis C virus NS5A protein alters intracellular calcium levels, induces oxidative stress, and activates STAT-3 and NF- κ B. Proc Natl Acad Sci U S A 98:9599–9604 [CrossRef]
    [Google Scholar]
  19. Han B., Zhang J.-T. 2002; Regulation of gene expression by internal ribosome entry sites or cryptic promoters: the eIF4G story. Mol Cell Biol 22:7372–7384 [CrossRef]
    [Google Scholar]
  20. He Y., Yan W., Coito C., Li Y., Gale M. Jr, Katze M. G. 2003; The regulation of hepatitis C virus (HCV) internal ribosome-entry site-mediated translation by HCV replicons and nonstructural proteins. J Gen Virol 84:535–543 [CrossRef]
    [Google Scholar]
  21. Hellen C. U. T., Sarnow P. 2001; Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev 15:1593–1612 [CrossRef]
    [Google Scholar]
  22. Holcik M., Sonenberg N., Korneluk R. G. 2000; Internal ribosome initiation of translation and the control of cell death. Trends Genet 16:469–473 [CrossRef]
    [Google Scholar]
  23. Ito T., Tahara S. M., Lai M. M. C. 1998; The 3′-untranslated region of hepatitis C virus RNA enhances translation from an internal ribosomal entry site. J Virol 72:8789–8796
    [Google Scholar]
  24. Kalliampakou K. I., Kalamvoki M., Mavromara P. 2005; Hepatitis C virus (HCV) NS5A protein downregulates HCV IRES-dependent translation. J Gen Virol 86:1015–1025 [CrossRef]
    [Google Scholar]
  25. Kato N., Hijikata M., Ootsuyama Y., Nakagawa M., Ohkoshi S., Sugimura T., Shimotonho K. 1990; Molecular cloning of the human hepatitis C virus genome from Japanese patients with non-A, non-B hepatitis. Proc Natl Acad Sci U S A 87:9524–9528 [CrossRef]
    [Google Scholar]
  26. Korenaga M., Wang T., Li Y., Showalter L. A., Chan T., Sun J., Weinman S. A. 2005; Hepatitis C virus core protein inhibits mitochondrial electron transport and increases reactive oxygen species (ROS) production. J Biol Chem 280:37481–37488 [CrossRef]
    [Google Scholar]
  27. Koumenis C., Naczki C., Koritzinsky M., Rastani S., Diehl A., Sonenberg N., Koromilas A., Wouters B. G. 2002; Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2 α . Mol Cell Biol 22:7405–7416 [CrossRef]
    [Google Scholar]
  28. Krüger M., Beger C., Li Q.-X., Welch P. J., Tritz R., Leavitt M., Barber J. R., Wong-Staal F. 2000; Identification of eIF2B γ and eIF2 γ as cofactors of hepatitis C virus internal ribosome entry site-mediated translation using a functional genomics approach. Proc Natl Acad Sci U S A 97:8566–8571 [CrossRef]
    [Google Scholar]
  29. Lauer G. M., Walker B. D. 2001; Hepatitis C virus infection. N Engl J Med 345:41–52 [CrossRef]
    [Google Scholar]
  30. Li D., Takyar S. T., Lott W. B., Gowans E. J. 2003; Amino acids 1–20 of the hepatitis C virus (HCV) core protein specifically inhibit HCV IRES-dependent translation in HepG2 cells, and inhibit both HCV IRES-mediated and cap-dependent translation in HuH7 and CV-1 cells. J Gen Virol 84:815–825 [CrossRef]
    [Google Scholar]
  31. Lohmann V., Körner F., Koch J.-O., Herian U., Theilmann L., Bartenschlager R. 1999; Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285:110–113 [CrossRef]
    [Google Scholar]
  32. Moradpour D., Brass V., Gosert R., Wölk B., Blum H. E. 2002; Hepatitis C: molecular virology and antiviral targets. Trends Mol Med 8:476–482 [CrossRef]
    [Google Scholar]
  33. Moriya K., Nakagawa K., Santa T. & 11 other authors 2001; Oxidative stress in the absence of inflammation in a mouse model for hepatitis C virus-associated hepatocarcinogenesis. Cancer Res 61:4365–4370
    [Google Scholar]
  34. Novoa I., Zeng H., Harding H. P., Ron D. 2001; Feedback inhibition of the unfolded protein response by GADD34 -mediated dephosphorylation of eIF2 α . J Cell Biol 153:1011–1022 [CrossRef]
    [Google Scholar]
  35. Okuda M., Li K., Beard M. R., Showalter L. A., Scholle F., Lemon S. M., Weinman S. A. 2002; Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein. Gastroenterology 122:366–375 [CrossRef]
    [Google Scholar]
  36. O'Loghlen A., Pérez-Morgado M. I., Salinas M., Martín M. E. 2003; Reversible inhibition of the protein phosphatase 1 by hydrogen peroxide. Potential regulation of eIF2 α phosphorylation in differentiated PC12 cells. Arch Biochem Biophys 417:194–202 [CrossRef]
    [Google Scholar]
  37. Paradis V., Mathurin P., Kollinger M. & 7 other authors 1997; In situ detection of lipid peroxidation in chronic hepatitis C: correlation with pathological features. J Clin Pathol 50:401–406 [CrossRef]
    [Google Scholar]
  38. Pestova T. V., Shatsky I. N., Fletcher S. P., Jackson R. T., Hellen C. U. T. 1998; A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitis C and classical swine fever virus RNAs. Genes Dev 12:67–83 [CrossRef]
    [Google Scholar]
  39. Qadri I., Iwahashi M., Capasso J. M., Hopken M. W., Flores S., Schaack J., Simon F. R. 2004; Induced oxidative stress and activated expression of manganese superoxide dismutase during hepatitis C virus replication: role of JNK, p38 MAPK and AP-1. Biochem J 378:919–928 [CrossRef]
    [Google Scholar]
  40. Reynolds J. E., Kaminski A., Kettinen H. J., Grace K., Clarke B. E., Carroll A. R., Rowlands D. J., Jackson R. J. 1995; Unique features of internal initiation of hepatitis C virus RNA translation. EMBO J 14:6010–6020
    [Google Scholar]
  41. Rivas-Estilla A. M., Svitkin Y., Lastra M. L., Hatzoglou M., Sherker A., Koromilas A. E. 2002; PKR-dependent mechanisms of gene expression from a subgenomic hepatitis C virus clone. J Virol 76:10637–10653 [CrossRef]
    [Google Scholar]
  42. Schwarz K. B. 1996; Oxidative stress during viral infection: a review. Free Radic Biol Med 21:641–649 [CrossRef]
    [Google Scholar]
  43. Sherrill K. W., Byrd M. P., Van Eden M. E., Lloyd R. E. 2004; BCL-2 translation is mediated via internal ribosome entry during cell stress. J Biol Chem 279:29066–29074 [CrossRef]
    [Google Scholar]
  44. Tsukiyama-Kohara K., Iizuka N., Kohara M., Nomoto A. 1992; Internal ribosome entry site within hepatitis C virus RNA. J Virol 66:1476–1483
    [Google Scholar]
  45. Van Eden M. E., Byrd M. P., Sherrill K. W., Lloyd R. E. 2004a; Demonstrating internal ribosome entry sites in eukaryotic mRNAs using stringent RNA test procedures. RNA 10:720–730 [CrossRef]
    [Google Scholar]
  46. Van Eden M. E., Byrd M. P., Sherrill K. W., Lloyd R. E. 2004b; Translation of cellular inhibitor of apoptosis protein 1 (c-IAP1) mRNA is IRES mediated and regulated during cell stress. RNA 10:469–481 [CrossRef]
    [Google Scholar]
  47. Wakita T., Pietschmann T., Kato T. & 9 other authors 2005; Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med 11:791–796 [CrossRef]
    [Google Scholar]
  48. Wang H., Joseph J. A. 1999; Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 27:612–616 [CrossRef]
    [Google Scholar]
  49. Yamashita T., Kaneko S., Hashimato S., Sato T., Nagai S., Toyoda N., Suzuki T., Kobayashi K., Matsushima K. 2001; Serial analysis of gene expression in chronic hepatitis C and hepatocellular carcinoma. Biochem Biophys Res Commun 282:647–654 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82051-0
Loading
/content/journal/jgv/10.1099/vir.0.82051-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error