Role of the yellow fever virus structural protein genes in viral dissemination from the mosquito midgut Free

Abstract

Live-attenuated virus vaccines are key components in controlling arboviral diseases, but they must not disseminate in or be transmitted by mosquito vectors. Although the cycles in which many mosquito-borne viruses are transmitted are well understood, the role of viral genetics in these processes has not been fully elucidated. (YFV) is an important arbovirus and the prototype member of the family . Here, YFV was used in mosquitoes as a model to investigate the genetic basis of infection and dissemination in mosquitoes. Viruses derived from infectious clones and chimeric viruses with defined sequential manipulations were used to investigate the influence of specific sequences within the membrane and envelope structural protein genes on dissemination of virus from the mosquito midgut. Substitution of domain III of the envelope protein from a midgut-restricted YFV into a wild-type YFV resulted in a marked decrease in virus dissemination, suggesting an important role for domain III in this process. However, synergism between elements within the flavivirus structural and non-structural protein genes may be necessary for efficient virus escape from the mosquito midgut.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82023-0
2006-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/10/2993.html?itemId=/content/journal/jgv/10.1099/vir.0.82023-0&mimeType=html&fmt=ahah

References

  1. Blaney J. A. Jr, Johnson D. H., Manipon G. G., Firestone C.-Y., Hanson C. T., Murphy B. R., Whitehead S. S. 2002; Genetic basis of attenuation of dengue virus type 4 small plaque mutants with restricted replication in suckling mice and in SCID mice transplanted with human liver cells. Virology 300:125–139 [CrossRef]
    [Google Scholar]
  2. Blaney J. A. Jr, Hanson C. M., Firestone C.-Y., Hanley K. A., Murphy B. R., Whitehead S. S. 2004; Genetically modified, live attenuated dengue virus type 3 vaccine candidates. Am J Trop Med Hyg 71:811–821
    [Google Scholar]
  3. Brault A. C., Powers A. M., Weaver S. C. 2002; Vector infection determinants of Venezuelan equine encephalitis virus reside within the E2 envelope glycoprotein. J Virol 76:6387–6392 [CrossRef]
    [Google Scholar]
  4. Brault A. C., Powers A. M., Ortiz D., Estrada-Franco J. G., Navarro-Lopes R., Weaver S. C. 2004; Venezuelan equine encephalitis emergence: enhanced vector infection from a single amino acid substitution in the envelope glycoprotein. Proc Natl Acad Sci U S A 101:11344–11349 [CrossRef]
    [Google Scholar]
  5. Bredenbeek P. J., Kooi E. A., Lindenbach B., Huijkman N., Rice C. M., Spaan W. J. M. 2003; A stable full-length yellow fever virus cDNA clone and the role of conserved RNA elements in flavivirus replication. J Gen Virol 84:1261–1268 [CrossRef]
    [Google Scholar]
  6. Catteau A., Kalinina O., Wagner M.-C., Deubel V., Courageot M.-P., Desprès P. 2003; Dengue virus M protein contains a proapoptotic sequence referred to as ApoptoM . J Gen Virol 84:2781–2793 [CrossRef]
    [Google Scholar]
  7. Dunster L. M., Wang H., Ryman K. D., Miller B. R., Watowich S. J., Minor P. D., Barrett A. D. T. 1999; Molecular and biological changes associated with HeLa cell attenuation of wild-type yellow fever virus. Virology 261:309–318 [CrossRef]
    [Google Scholar]
  8. Higgs S. 2004; How do mosquito vectors live with their viruses?. In Microbe–Vector Interactions in Vector-Borne Diseases pp  103–137 Edited by Gillespie S. H., Smith G. L., Osbourn A. Cambridge: Cambridge University Press;
    [Google Scholar]
  9. Higgs S., Olson K. E., Kamrud K. I., Powers A. M., Beaty B. J. 1997; Viral expression systems and viral infections in insects. In The Molecular Biology of Insect Disease Vectors: a Methods Manual pp  459–483 Edited by Crampton J. M., Beard C. B., Louis C. London: Chapman;
    [Google Scholar]
  10. Holt R. A., Subramanian G. M., Halpern A. & 121 other authors 2002; The genome sequence of the malaria mosquito Anopheles gambiae . Science 298:129–149 [CrossRef]
    [Google Scholar]
  11. Hombach J., Barrett A. D., Cardosa M. J., Deubel V., Guzman M., Kurane I., Roehrig J. T., Sabchareon A., Kieny M. P. 2005; Review on flavivirus vaccine development. Proceedings of a meeting jointly organized by the World Health Organization and the Thai Ministry of Public Health 26–27 April 2004 Bangkok, Thailand: Vaccine 23:2689–2695 [CrossRef]
    [Google Scholar]
  12. Jennings A. D., Gibson C. A., Miller B. R. & 11 other authors 1994; Analysis of a yellow fever virus isolated from a fatal case of vaccine-associated human encephalitis. J Infect Dis 169:512–518 [CrossRef]
    [Google Scholar]
  13. Johnson B. W., Chambers T. V., Crabtree M. B., Bhatt T. R., Guirakhoo F., Monath T. P., Miller B. R. 2002; Growth characteristics of ChimeriVaxTM-DEN2 vaccine virus in Aedes aegypti and Aedes albopictus mosquitoes. Am J Trop Med Hyg 67:260–265
    [Google Scholar]
  14. Johnson B. W., Chambers T. V., Crabtree M. B., Arroyo J., Monath T. P., Miller B. R. 2003; Growth characteristics of the veterinary vaccine candidate ChimeriVaxTM-West Nile (WN) virus in Aedes and Culex mosquitoes. Med Vet Entomol 17:235–243 [CrossRef]
    [Google Scholar]
  15. Lindenbach B. D., Rice C. M. 2003; Molecular biology of flaviviruses. Adv Virus Res 59:23–61
    [Google Scholar]
  16. Ludwig G. V., Isreal B. A., Christensen B. M., Yuill T. M., Schultz K. T. 1991; Role of La Crosse virus glycoproteins in attachment of virus to host cells. Virology 181:564–571 [CrossRef]
    [Google Scholar]
  17. McElroy K. L., Tsetsarkin K. A., Vanlandingham D. L., Higgs S. 2005; Characterization of an infectious clone of the wild-type yellow fever virus Asibi strain that is able to infect and disseminate in mosquitoes. J Gen Virol 86:1747–1751 [CrossRef]
    [Google Scholar]
  18. Miller B. R. 1987; Increased yellow fever virus infection and dissemination rates in Aedes aegypti mosquitoes orally exposed to freshly grown virus. Trans R Soc Trop Med Hyg 81:1011–1012 [CrossRef]
    [Google Scholar]
  19. Miller B. R., Adkins D. 1988; Biological characterization of plaque-size variants of yellow fever virus in mosquitoes and mice. Acta Virol 32:227–234
    [Google Scholar]
  20. Miller B. R., Mitchell C. J. 1991; Genetic selection of a flavivirus-refractory strain of the yellow fever mosquito Aedes aegypti . Am J Trop Med Hyg 45:399–407
    [Google Scholar]
  21. Modis Y., Ogata S., Clements D., Harrison S. C. 2004; Structure of the dengue virus envelope protein after membrane fusion. Nature 427:313–319 [CrossRef]
    [Google Scholar]
  22. Monath T. P., Kanesa-Thasan N., Guirakhoo F. & 14 other authors 2005; Recombination and flavivirus vaccines: a commentary. Vaccine 23:2956–2958 [CrossRef]
    [Google Scholar]
  23. Myles K. M., Pierro D. J., Olson K. E. 2003; Deletions in the putative cell receptor-binding domain of Sindbis virus strain MRE16 E2 glycoprotein reduce midgut infectivity in Aedes aegypti . J Virol 77:8872–8881 [CrossRef]
    [Google Scholar]
  24. Op De Beeck A., Rouillé Y., Caron M., Duvet S., Dubuisson J. 2004; The transmembrane domains of the prM and E proteins of yellow fever virus are endoplasmic reticulum localization signals. J Virol 78:12591–12602 [CrossRef]
    [Google Scholar]
  25. Petersen L. A., Marfin A. A. 2005; Shifting epidemiology of Flaviviridae. J Travel Med 12 (Suppl. 1):S3–S11
    [Google Scholar]
  26. Reddy J. T., Locke M. 1990; The size limited penetration of gold particles through insect basal laminae. J Insect Physiol 36:397–408 [CrossRef]
    [Google Scholar]
  27. Rey F. A., Heinz F. X., Mandl C., Kunz C., Harrison S. C. 1995; The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. Nature 375:291–298 [CrossRef]
    [Google Scholar]
  28. Romoser W. S., Wasielowski L. P. Jr, Pushko P., Kondig J. P., Lerdthusnee K., Neira M., Ludwig G. V. 2004; Evidence for arbovirus dissemination conduits from the mosquito (Diptera: Culicidae) midgut. J Med Entomol 41:467–475 [CrossRef]
    [Google Scholar]
  29. Sundin D. R., Beaty B. J., Nathanson M., Gonzales-Scarano F. 1987; A G1 glycoprotein epitope of La Crosse virus: a determinant of infection of Aedes triseriatus . Science 235:591–593 [CrossRef]
    [Google Scholar]
  30. Tabachnick W. J. 2003; Reflections on the Anopheles gambiae genome sequence, transgenic mosquitoes and the prospect for controlling malaria and other vector borne diseases. J Med Entomol 40:597–606 [CrossRef]
    [Google Scholar]
  31. Tabachnick W. J., Wallis G. P., Aitken T. H., Miller B. R., Amato G. D., Lorenz L., Powell J. R., Beaty B. J. 1985; Oral infection of Aedes aegypti with yellow fever virus: geographic variation and genetic considerations. Am J Trop Med Hyg 34:1219–1224
    [Google Scholar]
  32. Vanlandingham D. L., Hong C., Klingler K., Tsetsarkin K., McElroy K. L., Powers A. M., Lehane M. J., Higgs S. 2005; Differential infectivities of o'nyong-nyong and chikungunya virus isolates in Anopheles gambiae and Aedes aegypti mosquitoes. Am J Trop Med Hyg 72:616–621
    [Google Scholar]
  33. Wang H., Ryman K. D., Jennings A. D., Wood A. J., Taffs F., Minor P. D., Sanders P. G., Barrett A. D. 1995; Comparison of the genomes of the wild-type French viscerotropic strain of yellow fever virus with its vaccine derivative French neurotropic vaccine. J Gen Virol 76:2749–2755 [CrossRef]
    [Google Scholar]
  34. Whitehead S. S., Hanley K. A., Blaney J. A. Jr, Gilmore L. E., Elkins W. R., Murphy B. R. 2003; Substitution of the structural genes of dengue virus type 4 with those of type 2 results in chimeric vaccine candidates which are attenuated in mosquitoes, mice, and rhesus monkeys. Vaccine 21:4307–4316 [CrossRef]
    [Google Scholar]
  35. Whitman L. 1939; Failure of Aedes aegypti to transmit yellow fever cultured virus (17D). Am J Trop Med Hyg 19:19–26
    [Google Scholar]
  36. WHO 2003; Yellow fever vaccine. Wkly Epidemiol Rec 78:349–359
    [Google Scholar]
  37. Woodward T. M., Miller B. R., Beaty B. J., Trent D. W., Roehrig J. T. 1991; A single amino acid change in the E2 glycoprotein of Venezuelan equine encephalitis virus affects replication and dissemination in Aedes aegypti mosquitoes. J Gen Virol 72:2431–2435 [CrossRef]
    [Google Scholar]
  38. Yun S.-I., Kim S.-Y., Rice C. M., Lee Y.-M. 2003; Development and application of a reverse genetics system for Japanese encephalitis virus. J Virol 77:6450–6465 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82023-0
Loading
/content/journal/jgv/10.1099/vir.0.82023-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed