1887

Abstract

The plant-infecting geminiviruses deliver their genome and viral proteins into the host cell nucleus. Members of the family possess either a bipartite genome composed of two ∼2.6 kb DNAs or a monopartite genome of ∼3.0 kb DNA. The bipartite genome of (BDMV) encodes several karyophilic proteins, among them the capsid protein (CP) and BV1 (nuclear shuttle protein). A CP is also encoded by the monopartite genome of (TYLCV). Here, an assay system was used for direct demonstration of nuclear import of BDMV BV1 and TYLCV CP, as well as synthetic peptides containing their putative nuclear localization signals (NLSs). Full-length recombinant BDMV BV1 and TYLCV CP mediated import of conjugated fluorescently labelled BSA molecules into nuclei of permeabilized mammalian cells. Fluorescently labelled and biotinylated BSA conjugates bearing the synthetic peptides containing aa 3–20 of TYLCV CP (CP-NLS) or aa 84–106 of BDMV BV1 (BV1-NLS) were also imported into the nuclei of permeabilized cells. This import was blocked by the addition of unlabelled BSA–NLS peptide conjugates or excess unlabelled free NLS peptides. The CP- and BV1-NLS peptides also mediated nuclear import of fluorescently labelled BSA molecules into the nuclei of microinjected mesophyll cells of leaves, demonstrating their biological function in intact plant tissue. BV1-NLS and CP-NLS were shown to mediate specific binding to importin , both and . These results are consistent with a common nuclear-import pathway for CP and BV1, probably via importin .

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82021-0
2006-09-01
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/9/2709.html?itemId=/content/journal/jgv/10.1099/vir.0.82021-0&mimeType=html&fmt=ahah

References

  1. Armon-Omer, A., Graessmann, A. & Loyter, A. ( 2004; ). A synthetic peptide bearing the HIV-1 integrase 161–173 amino acid residues mediates active nuclear import and binding to importin α: characterization of a functional nuclear localization signal. J Mol Biol 336, 1117–1128.[CrossRef]
    [Google Scholar]
  2. Atmakuri, K., Ding, Z. & Christie, P. J. ( 2003; ). VirE2, a type IV secretion substrate, interacts with the VirD4 transfer protein at cell poles of Agrobacterium tumefaciens. Mol Microbiol 49, 1699–1713.[CrossRef]
    [Google Scholar]
  3. Bayer, E. A. & Wilchek, M. ( 1980; ). The use of the avidin–biotin complex as a tool in molecular biology. Methods Biochem Anal 26, 1–45.
    [Google Scholar]
  4. Broder, Y. C., Stanhill, A., Zakai, N., Friedler, A., Gilon, C. & Loyter, A. ( 1997; ). Translocation of NLS–BSA conjugates into nuclei of permeabilized mammalian cells can be supported by protoplast extract. An experimental system for studying plant cytosolic factors involved in nuclear import. FEBS Lett 412, 535–539.[CrossRef]
    [Google Scholar]
  5. Brown, J. K. ( 2001; ). The molecular epidemiology of begomoviruses. In Trends in Plant Virology, pp. 279–316. Edited by J. A. Khan & J. Dykstra. New York: Haworth Press.
  6. Citovsky, V., de Vos, G. & Zambryski, P. ( 1988; ). Single-stranded DNA binding protein encoded by the virE locus of Agrobacterium tumefaciens. Science 240, 501–504.[CrossRef]
    [Google Scholar]
  7. Citovsky, V., Kapelnikov, A., Oliel, S., Zakai, N., Rojas, M. R., Gilbertson, R. L., Tzfira, T. & Loyter, A. ( 2004; ). Protein interactions involved in nuclear import of the Agrobacterium VirE2 protein in vivo and in vitro. J Biol Chem 279, 29528–29533.[CrossRef]
    [Google Scholar]
  8. Cormack, B. P., Bertram, G., Egerton, M., Gow, N. A. R., Falkow, S. & Brown, A. J. P. ( 1997; ). Yeast-enhanced green fluorescent protein (yEGFP): a reporter of gene expression in Candida albicans. Microbiology 143, 303–311.[CrossRef]
    [Google Scholar]
  9. Fontes, M. R. M., Teh, T. & Kobe, B. ( 2000; ). Structural basis of recognition of monopartite and bipartite nuclear localization sequences by mammalian importin-α. J Mol Biol 297, 1183–1194.[CrossRef]
    [Google Scholar]
  10. Friedler, A., Zakai, N., Karni, O., Broder, Y. C., Baraz, L., Kotler, M., Loyter, A. & Gilon, C. ( 1998; ). Backbone cyclic peptide, which mimics the nuclear localization signal of human immunodeficiency virus type 1 matrix protein, inhibits nuclear import and virus production in nondividing cells. Biochemistry 37, 5616–5622.[CrossRef]
    [Google Scholar]
  11. Gafni, Y. & Epel, B. ( 2002; ). The role of host and viral proteins in intra- and inter-cellular trafficking of geminiviruses. Physiol Mol Plant Pathol 60, 231–241.[CrossRef]
    [Google Scholar]
  12. Görlich, D. ( 1997; ). Nuclear protein import. Curr Opin Cell Biol 9, 412–419.[CrossRef]
    [Google Scholar]
  13. Graessmann, M. & Graessmann, A. ( 1983; ). Microinjection of tissue culture cells. Methods Enzymol 101, 482–492.
    [Google Scholar]
  14. Haley, A., Richardson, K., Zhan, X. & Morris, B. ( 1995; ). Mutagenesis of the BC1 and BV1 genes of African cassava mosaic virus identifies conserved amino acids that are essential for spread. J Gen Virol 76, 1291–1298.[CrossRef]
    [Google Scholar]
  15. Hallan, V. & Gafni, Y. ( 2001; ). Tomato yellow leaf curl virus (TYLCV) capsid protein (CP) subunit interactions: implications for viral assembly. Arch Virol 146, 1765–1773.[CrossRef]
    [Google Scholar]
  16. Hanley-Bowdoin, L., Settlage, S. B., Orozco, B. M., Nagar, S. & Robertson, D. ( 2000; ). Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation. Crit Rev Biochem Mol Biol 35, 105–140.
    [Google Scholar]
  17. Hicks, G. R. & Raikhel, N. V. ( 1995; ). Nuclear localization signal binding proteins in higher plant nuclei. Proc Natl Acad Sci U S A 92, 734–738.[CrossRef]
    [Google Scholar]
  18. Hu, C.-D. & Kerppola, T. K. ( 2003; ). Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat Biotechnol 21, 539–545.[CrossRef]
    [Google Scholar]
  19. Hu, C.-D., Chinenov, Y. & Kerppola, T. K. ( 2002; ). Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell 9, 789–798.[CrossRef]
    [Google Scholar]
  20. Hübner, S., Smith, H. M. S., Hu, W., Chan, C. K., Rihs, H.-P., Paschal, B. M., Raikhel, N. V. & Jans, D. A. ( 1999; ). Plant importin α binds nuclear localization sequences with high affinity and can mediate nuclear import independent of importin β. J Biol Chem 274, 22610–22617.[CrossRef]
    [Google Scholar]
  21. Jans, D. A., Xiao, C.-Y. & Lam, M. H. C. ( 2000; ). Nuclear targeting signal recognition: a key control point in nuclear transport? Bioessays 22, 532–544.[CrossRef]
    [Google Scholar]
  22. Jenkins, Y., McEntee, M., Weis, K. & Greene, W. C. ( 1998; ). Characterization of HIV-1 Vpr nuclear import: analysis of signals and pathways. J Cell Biol 143, 875–885.[CrossRef]
    [Google Scholar]
  23. Jiang, C.-J., Imamoto, N., Matsuki, R., Yoneda, Y. & Yamamoto, N. ( 1998; ). Functional characterization of a plant importin α homologue. Nuclear localization signal (NLS)-selective binding and mediation of nuclear import of NLS proteins in vitro. J Biol Chem 273, 24083–24087.[CrossRef]
    [Google Scholar]
  24. Kalderon, D., Roberts, B. L., Richardson, W. D. & Smith, A. E. ( 1984; ). A short amino acid sequence able to specify nuclear location. Cell 39, 499–509.[CrossRef]
    [Google Scholar]
  25. Karni, O., Friedler, A., Zakai, N., Gilon, C. & Loyter, A. ( 1998; ). A peptide derived from the N-terminal region of HIV-1 Vpr promotes nuclear import in permeabilized cells: elucidation of the NLS region of the Vpr. FEBS Lett 429, 421–425.[CrossRef]
    [Google Scholar]
  26. Krichevsky, A., Graessmann, A., Nissim, A., Piller, S. C., Zakai, N. & Loyter, A. ( 2003; ). Antibody fragments selected by phage display against the nuclear localization signal of the HIV-1 Vpr protein inhibit nuclear import in permeabilized and intact cultured cells. Virology 305, 77–92.[CrossRef]
    [Google Scholar]
  27. Kunik, T., Palanichelvam, K., Czosnek, H., Citovsky, V. & Gafni, Y. ( 1998; ). Nuclear import of the capsid protein of tomato yellow leaf curl virus (TYLCV) in plant and insect cells. Plant J 13, 393–399.[CrossRef]
    [Google Scholar]
  28. Kunik, T., Mizrachy, L., Citovsky, V. & Gafni, Y. ( 1999; ). Characterization of a tomato karyopherin α that interacts with the tomato yellow leaf curl virus (TYLCV) capsid protein. J Exp Bot 50, 731–732.
    [Google Scholar]
  29. Lazarowitz, S. G. & Beachy, R. N. ( 1999; ). Viral movement proteins as probes for intracellular and intercellular trafficking in plants. Plant Cell 11, 535–548.[CrossRef]
    [Google Scholar]
  30. Mattaj, I. W. & Englmeier, L. ( 1998; ). Nucleocytoplasmic transport: the soluble phase. Annu Rev Biochem 67, 265–306.[CrossRef]
    [Google Scholar]
  31. Melchior, F., Paschal, B., Evans, J. & Gerace, L. ( 1993; ). Inhibition of nuclear protein import by nonhydrolyzable analogues of GTP and identification of the small GTPase Ran/TC4 as an essential transport factor. J Cell Biol 123, 1649–1659.[CrossRef]
    [Google Scholar]
  32. Nigg, E. A. ( 1997; ). Nucleocytoplasmic transport: signals, mechanisms and regulation. Nature 386, 779–787.[CrossRef]
    [Google Scholar]
  33. Nigg, E. A., Baeuerle, P. A. & Lührmann, R. ( 1991; ). Nuclear import-export: in search of signals and mechanisms. Cell 66, 15–22.[CrossRef]
    [Google Scholar]
  34. Noueiry, A. O., Lucas, W. J. & Gilbertson, R. L. ( 1994; ). Two proteins of a plant DNA virus coordinate nuclear and plasmodesmal transport. Cell 76, 925–932.[CrossRef]
    [Google Scholar]
  35. Palanichelvam, K., Kunik, T., Citovsky, V. & Gafni, Y. ( 1998; ). The capsid protein of tomato yellow leaf curl virus binds cooperatively to single-stranded DNA. J Gen Virol 79, 2829–2833.
    [Google Scholar]
  36. Pascal, E., Goodlove, P. E., Wu, L. C. & Lazarowitz, S. G. ( 1993; ). Transgenic tobacco plants expressing the geminivirus BL1 protein exhibit symptoms of viral disease. Plant Cell 5, 795–807.[CrossRef]
    [Google Scholar]
  37. Pascal, E., Sanderfoot, A. A., Ward, B. M., Medville, R., Turgeon, R. & Lazarowitz, S. G. ( 1994; ). The geminivirus BR1 movement protein binds single-stranded DNA and localizes to the cell nucleus. Plant Cell 6, 995–1006.[CrossRef]
    [Google Scholar]
  38. Rojas, M. R., Noueiry, A. O., Lucas, W. J. & Gilbertson, R. L. ( 1998; ). Bean dwarf mosaic geminivirus movement proteins recognize DNA in a form-and size-specific manner. Cell 95, 105–113.[CrossRef]
    [Google Scholar]
  39. Rojas, M. R., Jiang, H., Salati, R., Xoconostle-Cázares, B., Sudarshana, M. R., Lucas, W. J. & Gilbertson, R. L. ( 2001; ). Functional analysis of proteins involved in movement of the monopartite begomovirus, Tomato yellow leaf curl virus. Virology 291, 110–125.[CrossRef]
    [Google Scholar]
  40. Rojas, M. R., Hagen, C., Lucas, W. J. & Gilbertson, R. L. ( 2005; ). Exploiting chinks in the plant's armor: evolution and emergence of geminiviruses. Annu Rev Phytopathol 43, 361–394.[CrossRef]
    [Google Scholar]
  41. Sanderfoot, A. A. & Lazarowitz, S. G. ( 1995; ). Cooperation in viral movement: the geminivirus BL1 movement protein interacts with BR1 and redirects it from the nucleus to the cell periphery. Plant Cell 7, 1185–1194.[CrossRef]
    [Google Scholar]
  42. Sanderfoot, A. A., Ingham, D. J. & Lazarowitz, S. G. ( 1996; ). A viral movement protein as a nuclear shuttle. The geminivirus BR1 movement protein contains domains essential for interaction with BL1 and nuclear localization. Plant Physiol 110, 23–33.[CrossRef]
    [Google Scholar]
  43. Tsuchisaka, A. & Theologis, A. ( 2004; ). Heterodimeric interactions among the 1-amino-cyclopropane-1-carboxylate synthase polypeptides encoded by the Arabidopsis gene family. Proc Natl Acad Sci U S A 101, 2275–2280.[CrossRef]
    [Google Scholar]
  44. Tzfira, T. & Citovsky, V. ( 2001; ). Comparison between nuclear import of nopaline- and octopine-specific Agrobacterium VirE2 proteins of plant, yeast and mammalian cells. Mol Plant Pathol 2, 171–176.[CrossRef]
    [Google Scholar]
  45. Yoneda, Y., Imamoto-Sonobe, N., Yamaizumi, M. & Uchida, T. ( 1987; ). Reversible inhibition of protein import into the nucleus by wheat germ agglutinin injected into cultured cells. Exp Cell Res 173, 586–595.[CrossRef]
    [Google Scholar]
  46. Zhang, S. C., Wege, C. & Jeske, H. ( 2001; ). Movement proteins (BC1 and BV1) of Abutilon mosaic geminivirus are cotransported in and between cells of sink but not of source leaves as detected by green fluorescent protein tagging. Virology 290, 249–260.[CrossRef]
    [Google Scholar]
  47. Ziemienowicz, A., Haasen, D., Staiger, D. & Merkle, T. ( 2003; ). Arabidopsis transportin1 is the nuclear import receptor for the circadian clock-regulated RNA-binding protein AtGRP7. Plant Mol Biol 53, 201–212.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82021-0
Loading
/content/journal/jgv/10.1099/vir.0.82021-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error