Nora virus, a persistent virus in , defines a new picorna-like virus family Free

Abstract

Several viruses, including picornaviruses, are known to establish persistent infections, but the mechanisms involved are poorly understood. Here, a novel picorna-like virus, Nora virus, which causes a persistent infection in , is described. It has a single-stranded, positive-sense genomic RNA of 11879 nt, followed by a poly(A) tail. Unlike other picorna-like viruses, the genome has four open reading frames (ORFs). One ORF encodes a picornavirus-like cassette of proteins for virus replication, including an iflavirus-like RNA-dependent RNA polymerase and a helicase that is related to those of mammalian picornaviruses. The three other ORFs are not closely related to any previously described viral sequences. The unusual sequence and genome organization in Nora virus suggest that it belongs to a new family of picorna-like viruses. Surprisingly, Nora virus could be detected in all tested laboratory stocks, as well as in wild-caught material. The viral titres varied enormously, between 10 and 10 viral genomes per fly in different stocks, without causing obvious pathological effects. The virus was also found in , a close relative of , but not in more distantly related species. It will now be possible to use genetics to study the factors that control this persistent infection.

Erratum

An erratum has been published for this content:
Nora virus, a persistent virus in , defines a new picorna-like virus family
Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81997-0
2006-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/10/3045.html?itemId=/content/journal/jgv/10.1099/vir.0.81997-0&mimeType=html&fmt=ahah

References

  1. Ashburner M., Golic K. G., Hawley R. S. 2005 Drosophila: a Laboratory Handbook , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  2. Åsling B., Dushay M. S., Hultmark D. 1995; Identification of early genes in the Drosophila immune response by PCR-based differential display: the Attacin A gene and the evolution of attacin-like proteins. Insect Biochem Mol Biol 25:511–518 [CrossRef]
    [Google Scholar]
  3. Brun G., Plus N. 1980; The viruses of Drosophila . In The Genetics and Biology of Drosophila pp  625–702 Edited by Ashburner M., Wright T. R. F. London: Academic Press;
    [Google Scholar]
  4. Calvez V., Pelletier I., Borzakian S., Colbère-Garapin F. 1993; Identification of a region of the poliovirus genome involved in persistent infection of HEp-2 cells. J Virol 67:4432–4435
    [Google Scholar]
  5. Dostert C., Jouanguy E., Irving P., Troxler L., Galiana-Arnoux D., Hetru C., Hoffmann J. A., Imler J.-L. 2005; The Jak-STAT signaling pathway is required but not sufficient for the antiviral response of Drosophila . Nat Immunol 6:946–953 [CrossRef]
    [Google Scholar]
  6. Dreher T. W., Miller W. A. 2006; Translational control in positive strand RNA plant viruses. Virology 344:185–197 [CrossRef]
    [Google Scholar]
  7. Hamilton B. A., Palazzolo M. J., Chang J. H., VijayRaghavan K., Mayeda C. A., Whitney M. A., Meyerowitz E. M. 1991; Large scale screen for transposon insertions into cloned genes. Proc Natl Acad Sci U S A 88:2731–2735 [CrossRef]
    [Google Scholar]
  8. Hedengren M., Åsling B., Dushay M. S., Ando I., Ekengren S., Wihlborg M., Hultmark D. 1999; Relish , a central factor in the control of humoral, but not cellular immunity in Drosophila . Mol Cell 4:827–837 [CrossRef]
    [Google Scholar]
  9. Hoffmann J. A. 2003; The immune response of Drosophila . Nature 426:33–38 [CrossRef]
    [Google Scholar]
  10. Hultmark D. 2003; Drosophila immunity: paths and patterns. Curr Opin Immunol 15:12–19 [CrossRef]
    [Google Scholar]
  11. Jeanmougin F., Thompson J. D., Gouy M., Higgins D. G., Gibson T. J. 1998; Multiple sequence alignment with Clustal X. Trends Biochem Sci 23:403–405 [CrossRef]
    [Google Scholar]
  12. Jiang X., Estes M. K., Metcalf T. G. 1987; Detection of hepatitis A virus by hybridization with single-stranded RNA probes. Appl Environ Microbiol 53:2487–2495
    [Google Scholar]
  13. Johnson K. N., Christian P. D. 1998; The novel genome organization of the insect picorna-like virus Drosophila C virus suggests this virus belongs to a previously undescribed virus family. J Gen Virol 79:191–203
    [Google Scholar]
  14. Julien J., Leparc-Goffart I., Lina B., Fuchs F., Foray S., Janatova I., Aymard M., Kopecka H. 1999; Postpolio syndrome: poliovirus persistence is involved in the pathogenesis. J Neurol 246:472–476 [CrossRef]
    [Google Scholar]
  15. Kim A., Terzian C., Santamaria P., Pélisson A., Prud'homme N., Bucheton A. 1994; Retroviruses in invertebrates: the gypsy retrotransposon is apparently an infectious retrovirus of Drosophila melanogaster . Proc Natl Acad Sci U S A 91:1285–1289 [CrossRef]
    [Google Scholar]
  16. Klingel K., Hohenadl C., Canu A., Albrecht M., Seemann M., Mall G., Kandolf R. 1992; Ongoing enterovirus-induced myocarditis is associated with persistent heart muscle infection: quantitative analysis of virus replication, tissue damage, and inflammation. Proc Natl Acad Sci U S A 89:314–318 [CrossRef]
    [Google Scholar]
  17. Koonin E. V., Dolja V. V. 1993; Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Crit Rev Biochem Mol Biol 28:375–430 [CrossRef]
    [Google Scholar]
  18. Krogh A., Larsson B., von Heijne G., Sonnhammer E. L. L. 2001; Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580 [CrossRef]
    [Google Scholar]
  19. Kylsten P., Samakovlis C., Hultmark D. 1990; The cecropin locus in Drosophila ; a compact gene cluster involved in the response to infection. EMBO J 9:217–224
    [Google Scholar]
  20. Landès-Devauchelle C., Bras F., Dezélée S., Teninges D. 1995; Gene 2 of the sigma rhabdovirus genome encodes the P protein, and gene 3 encodes a protein related to the reverse transcriptase of retroelements. Virology 213:300–312 [CrossRef]
    [Google Scholar]
  21. Leclerc V., Reichhart J.-M. 2004; The immune response of Drosophila melanogaster . Immunol Rev 198:59–71 [CrossRef]
    [Google Scholar]
  22. Oldstone M. B. A. 2006; Viral persistence: parameters, mechanisms and future predictions. Virology 344:111–118 [CrossRef]
    [Google Scholar]
  23. Pelletier I., Duncan G., Pavio N., Colbère-Garapin F. 1998; Molecular mechanisms of poliovirus persistence: key role of capsid determinants during the establishment phase. Cell Mol Life Sci 54:1385–1402 [CrossRef]
    [Google Scholar]
  24. Ryan M. D., Flint M. 1997; Virus-encoded proteinases of the picornavirus super-group. J Gen Virol 78:699–723
    [Google Scholar]
  25. Swofford D. L. 1991 paup: Phylogenetic Analysis Using Parsimony, 3.0 Champaign, IL: Illinois National History Survey;
    [Google Scholar]
  26. Tångrot J., Wang L., Kågström B., Sauer U. 2006; FISH – family identification of sequence homologues using structure anchored hidden Markov models. Nucleic Acids Res 34: (web server issue), W10–W14 [CrossRef]
    [Google Scholar]
  27. Tanji T., Ip Y. T. 2005; Regulators of the Toll and Imd pathways in the Drosophila innate immune response. Trends Immunol 26:193–198 [CrossRef]
    [Google Scholar]
  28. Zambon R. A., Nandakumar M., Vakharia V. N., Wu L. P. 2005; The Toll pathway is important for an antiviral response in Drosophila . Proc Natl Acad Sci U S A 102:7257–7262 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81997-0
Loading
/content/journal/jgv/10.1099/vir.0.81997-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed