1887

Abstract

A molecular clone of (JE virus) was derived from the JE virus Nakayama strain and used to produce infectious JE virus in cell culture. The engineered JE virus resembled the parental JE virus in cell-culture properties and was related closely to other JE virus strains based on nucleotide sequence analysis. The JE virus clone was used as a genetic background for construction of a chimeric virus containing the structural proteins prM and E of , serotype 2. The chimeric JE/dengue 2 virus generated authentic dengue 2 structural proteins as assessed by immunoassays for the dengue E protein. It exhibited a small plaque size and less efficient growth in various cell lines than the parental JE virus. JE/dengue 2 virus was non-neuroinvasive for young adult mice, but displayed partial neurovirulence at doses up to 4 log p.f.u. given intracerebrally. Immunization of 3-week-old mice with JE/dengue 2 virus yielded neutralizing-antibody titres against dengue 2 virus and conferred protection against dengue encephalitis caused by neuroadapted dengue 2 virus. A rise in post-challenge neutralizing-antibody titres against dengue 2 virus in surviving mice suggests that immunization is associated with establishment of a memory antibody response in this model. This study demonstrates the capacity of JE virus to serve as a vector for expression of heterologous flavivirus structural proteins. Similar to previous studies with other chimeric flaviviruses, this approach may be useful as a genetic system for engineering experimental vaccines against and other medically important flaviviruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81909-0
2006-11-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/11/3131.html?itemId=/content/journal/jgv/10.1099/vir.0.81909-0&mimeType=html&fmt=ahah

References

  1. Cao, J. X., Ni, H., Wills, M. R., Campbell, G. A., Sil, B. K., Ryman, K. D., Kitchen, I. & Barrett, A. D. T. ( 1995; ). Passage of Japanese encephalitis virus in HeLa cells results in attenuation of virulence in mice. J Gen Virol 76, 2757–2764.[CrossRef]
    [Google Scholar]
  2. Caufour, P. S., Motta, M. C. A., Yamamura, A. M. Y., Vazquez, S., Ferreira, I. I., Jabor, A. V., Bonaldo, M. C., Freire, M. S. & Galler, R. ( 2001; ). Construction, characterization and immunogenicity of recombinant yellow fever 17D-dengue type 2 viruses. Virus Res 79, 1–14.[CrossRef]
    [Google Scholar]
  3. Chambers, T. J., Nestorowicz, A., Mason, P. W. & Rice, C. M. ( 1999; ). Yellow fever/Japanese encephalitis chimeric viruses: construction and biological properties. J Virol 73, 3095–3101.
    [Google Scholar]
  4. Chambers, T. J., Liang, Y., Droll, D. A., Schlesinger, J. J., Davidson, A. D., Wright, P. J. & Jiang, X. ( 2003; ). Yellow fever virus/dengue-2 virus and yellow fever virus/dengue-4 virus chimeras: biological characterization, immunogenicity, and protection against dengue encephalitis in the mouse model. J Virol 77, 3655–3668.[CrossRef]
    [Google Scholar]
  5. Eckels, K. H., Yu, Y. X., Dubois, D. R., Marchette, N. J., Trent, D. W. & Johnson, A. J. ( 1988; ). Japanese encephalitis virus live-attenuated vaccine, Chinese strain SA14-14-2; adaptation to primary canine kidney cell cultures and preparation of a vaccine for human use. Vaccine 6, 513–518.[CrossRef]
    [Google Scholar]
  6. Edelman, R. ( 2005; ). Dengue and dengue vaccines. J Infect Dis 191, 650–653.[CrossRef]
    [Google Scholar]
  7. Gualano, R. C., Pryor, M. J., Cauchi, M. R., Wright, P. J. & Davidson, A. D. ( 1998; ). Identification of a major determinant of mouse neurovirulence of dengue virus type 2 using stably cloned genomic-length cDNA. J Gen Virol 79, 437–446.
    [Google Scholar]
  8. Gubler, D. J. ( 1997; ). Dengue and dengue hemorrhagic fever: its history and resurgence as a global public health problem. In Dengue and Dengue Hemorrhagic Fever, pp. 1–23. Edited by D. J. Gubler & G. Kuno. New York: CAB International.
  9. Guirakhoo, F., Zhang, Z.-X., Chambers, T. J., Delagrave, S., Arroyo, J., Barrett, A. D. T. & Monath, T. P. ( 1999; ). Immunogenicity, genetic stability, and protective efficacy of a recombinant, chimeric yellow fever-Japanese encephalitis virus (ChimeriVax-JE) as a live, attenuated vaccine candidate against Japanese encephalitis. Virology 257, 363–372.[CrossRef]
    [Google Scholar]
  10. Guirakhoo, F., Weltzin, R., Chambers, T. J. & 7 other authors ( 2000; ). Recombinant chimeric yellow fever-dengue type 2 virus is immunogenic and protective in nonhuman primates. J Virol 74, 5477–5485.[CrossRef]
    [Google Scholar]
  11. Guirakhoo, F., Pugachev, K., Zhang, Z. & 16 other authors ( 2004; ). Safety and efficacy of chimeric yellow fever-dengue virus tetravalent vaccine formulations in nonhuman primates. J Virol 78, 4761–4775.[CrossRef]
    [Google Scholar]
  12. Halstead, S. B. ( 2002; ). Vaccines aplenty. Curr Opin Infect Dis 15, 461–463.[CrossRef]
    [Google Scholar]
  13. Halstead, S. B. ( 2003; ). Neutralization and antibody-dependent enhancement of dengue viruses. Adv Virus Res 60, 421–467.
    [Google Scholar]
  14. Hashimoto, H., Nomoto, A., Watanabe, K., Mori, T., Takezawa, T., Aizawa, C., Takegami, T. & Hiramatsu, K. ( 1988; ). Molecular cloning and complete nucleotide sequence of the genome of Japanese encephalitis virus Beijing-1 strain. Virus Genes 1, 305–317.[CrossRef]
    [Google Scholar]
  15. Hennessy, S., Liu, Z., Tsai, T. F. & 9 other authors ( 1996; ). Effectiveness of live-attenuated Japanese encephalitis vaccine (SA14-14-2): a case-control study. Lancet 347, 1583–1586.[CrossRef]
    [Google Scholar]
  16. Hombach, J., Barrett, A. D. T., Cardosa, M. J., Deubel, V., Guzman, M., Kurane, I., Roehrig, J. T., Sabchareon, A. & Kieny, M. P. ( 2005; ). Review on flavivirus vaccine development. Proceedings of a meeting jointly organised by the World Health Organization and the Thai Ministry of Public Health, 26–27 April 2004, Bangkok, Thailand. Vaccine 23, 2689–2695.[CrossRef]
    [Google Scholar]
  17. Huang, C. Y.-H., Butrapet, S., Pierro, D. J., Chang, G.-J. J., Hunt, A. R., Bhamarapravati, N., Gubler, D. J. & Kinney, R. M. ( 2000; ). Chimeric dengue type 2 (vaccine strain PDK-53)/dengue type 1 virus as a potential candidate dengue type 1 virus vaccine. J Virol 74, 3020–3028.[CrossRef]
    [Google Scholar]
  18. Lee, E. & Lobigs, M. ( 2002; ). Mechanism of virulence attenuation of glycosaminoglycan-binding variants of Japanese encephalitis virus and Murray Valley encephalitis virus. J Virol 76, 4901–4911.[CrossRef]
    [Google Scholar]
  19. Mangada, M. N. M. & Takegami, T. ( 1999; ). Molecular characterization of the Japanese encephalitis virus representative immunotype strain JaGAr 01. Virus Res 59, 101–112.[CrossRef]
    [Google Scholar]
  20. Marfin, A. A., Barwick Eidex, R. S., Kozarsky, P. E. & Cetron, M. S. ( 2005; ). Yellow fever and Japanese encephalitis vaccines: indications and complications. Infect Dis Clin North Am 19, 151–168.[CrossRef]
    [Google Scholar]
  21. Mathenge, E. G., Parquet M. del C., M., Funakoshi, Y., Houhara, S., Wong, P. F., Ichinose, A., Hasebe, F., Inoue, S. & Morita, K. ( 2004; ). Fusion PCR generated Japanese encephalitis virus/dengue 4 virus chimera exhibits lack of neuroinvasiveness, attenuated neurovirulence, and a dual-flavi immune response in mice. J Gen Virol 85, 2503–2513.[CrossRef]
    [Google Scholar]
  22. McAda, P. C., Mason, P. W., Schmaljohn, C. S., Dalrymple, J. M., Mason, T. L. & Fournier, M. J. ( 1987; ). Partial nucleotide sequence of the Japanese encephalitis virus genome. Virology 158, 348–360.[CrossRef]
    [Google Scholar]
  23. Mishin, V. P., Cominelli, F. & Yamshchikov, V. F. ( 2001; ). A ‘minimal’ approach in design of flavivirus infectious DNA. Virus Res 81, 113–123.[CrossRef]
    [Google Scholar]
  24. Monath, T. P. ( 1986; ). Pathobiology of the flaviviruses. In The Togaviridae and the Flaviviridae, pp. 375–440. Edited by S. Schlesinger & M. J. Schlesinger. New York: Plenum.
  25. Monath, T. P. ( 1994; ). Dengue: the risk to developed and developing countries. Proc Natl Acad Sci U S A 91, 2395–2400.[CrossRef]
    [Google Scholar]
  26. Monath, T. P. ( 2002; ). Japanese encephalitis vaccines: current vaccines and future prospects. Curr Top Microbiol Immunol 267, 105–138.
    [Google Scholar]
  27. Monath, T. P. & Heinz, F. X. ( 1996; ). Flaviviruses. In Fields Virology, 3rd edn, pp. 961–1034. Edited by B. N. Fields, D. M. Knipe & P. M. Howley. Philadelphia, PA: Lippincott–Raven.
  28. Monath, T. P., Soike, K., Levenbook, I. & 9 other authors ( 1999; ). Recombinant, chimaeric live, attenuated vaccine (ChimeriVax) incorporating the envelope genes of Japanese encephalitis (SA14-14-2) virus and the capsid and nonstructural genes of yellow fever (17D) virus is safe, immunogenic and protective in non-human primates. Vaccine 17, 1869–1882.[CrossRef]
    [Google Scholar]
  29. Monath, T. P., Guirakhoo, F., Nichols, R. & 9 other authors ( 2003; ). Chimeric live, attenuated vaccine against Japanese encephalitis (ChimeriVax-JE): phase 2 clinical trials for safety and immunogenicity, effect of vaccine dose and schedule, and memory response to challenge with inactivated Japanese encephalitis antigen. J Infect Dis 188, 1213–1230.[CrossRef]
    [Google Scholar]
  30. Ni, H. & Barrett, A. D. T. ( 1996; ). Molecular differences between wild-type Japanese encephalitis virus strains of high and low mouse neuroinvasiveness. J Gen Virol 77, 1449–1455.[CrossRef]
    [Google Scholar]
  31. Ni, H. & Barrett, A. D. T. ( 1998; ). Attenuation of Japanese encephalitis virus by selection of its mouse brain membrane receptor preparation escape variants. Virology 241, 30–36.[CrossRef]
    [Google Scholar]
  32. Ni, H., Burns, N. J., Chang, G.-J. J., Zhang, M.-J., Wills, M. R., Trent, D. W., Sanders, P. G. & Barrett, A. D. T. ( 1994; ). Comparison of nucleotide and deduced amino acid sequence of the 5′ non-coding region and structural protein genes of the wild-type Japanese encephalitis virus strain SA14 and its attenuated vaccine derivatives. J Gen Virol 75, 1505–1510.[CrossRef]
    [Google Scholar]
  33. Ni, H., Chang, G.-J. J., Xie, H., Trent, D. W. & Barrett, A. D. T. ( 1995; ). Molecular basis of attenuation of neurovirulence of wild-type Japanese encephalitis virus strain SA14. J Gen Virol 76, 409–413.[CrossRef]
    [Google Scholar]
  34. Nitayaphan, S., Grant, J. A., Chang, G.-J. J. & Trent, D. W. ( 1990; ). Nucleotide sequence of the virulent SA-14 strain of Japanese encephalitis virus and its attenuated vaccine derivative, SA14-14-2. Virology 177, 541–552.[CrossRef]
    [Google Scholar]
  35. Pletnev, A. G. & Men, R. ( 1998; ). Attenuation of the Langat tick-borne flavivirus by chimerization with mosquito-borne flavivirus dengue type 4. Proc Natl Acad Sci U S A 95, 1746–1751.[CrossRef]
    [Google Scholar]
  36. Pletnev, A. G., Bray, M., Huggins, J. & Lai, C.-J. ( 1992; ). Construction and characterization of chimeric tick-borne encephalitis/dengue type 4 viruses. Proc Natl Acad Sci U S A 89, 10532–10536.[CrossRef]
    [Google Scholar]
  37. Pletnev, A. G., Bray, M., Hanley, K. A., Speicher, J. & Elkins, R. ( 2001; ). Tick-borne langat/mosquito-borne dengue flavivirus chimera, a candidate live attenuated vaccine for protection against disease caused by members of the tick-borne encephalitis virus complex: evaluation in rhesus monkeys and in mosquitoes. J Virol 75, 8259–8267.[CrossRef]
    [Google Scholar]
  38. Pletnev, A. G., Putnak, R., Speicher, J., Wagar, E. J. & Vaughn, D. W. ( 2002; ). West Nile virus/dengue type 4 virus chimeras that are reduced in neurovirulence and peripheral virulence without loss of immunogenicity or protective efficacy. Proc Natl Acad Sci U S A 99, 3036–3041.[CrossRef]
    [Google Scholar]
  39. Rice, C. M., Grakoui, A., Galler, R. & Chambers, T. J. ( 1989; ). Transcription of infectious yellow fever RNA from full-length cDNA templates produced by in vitro ligation. New Biol 1, 285–296.
    [Google Scholar]
  40. Solomon, T., Dung, N. M., Kneen, R., Gainsborough, M., Vaughn, D. W. & Khanh, V. T. ( 2000; ). Japanese encephalitis. J Neurol Neurosurg Psychiatry 68, 405–415.[CrossRef]
    [Google Scholar]
  41. Sumiyoshi, H., Mori, C., Fuke, I., Morita, K., Kuhara, S., Kondou, J., Kikuchi, Y., Nagamatu, H. & Igarashi, A. ( 1987; ). Complete nucleotide sequence of the Japanese encephalitis virus genome RNA. Virology 161, 497–510.[CrossRef]
    [Google Scholar]
  42. Sumiyoshi, H., Hoke, C. H. & Trent, D. W. ( 1992; ). Infectious Japanese encephalitis virus RNA can be synthesized from in vitro-ligated cDNA templates. J Virol 66, 5425–5431.
    [Google Scholar]
  43. Takahashi, H., Pool, V., Tsai, T. F. & Chen, R. T. ( 2000; ). Adverse events after Japanese encephalitis vaccination: review of post-marketing surveillance data from Japan and the United States. The V.A.E.R.S. Working Group. Vaccine 18, 2963–2969.[CrossRef]
    [Google Scholar]
  44. Tsai, T. F. ( 1994; ). Japanese encephalitis vaccines. In Vaccines, 2nd edn, pp. 671–713. Edited by S. A. Plotkin & E. A. Mortimer. Philadelphia, PA: WB Saunders.
  45. Vrati, S. ( 2000; ). Comparison of the genome sequences and the phylogenetic analyses of the GP78 and the Vellore P20778 isolates of Japanese encephalitis virus from India. J Biosci 25, 257–262.[CrossRef]
    [Google Scholar]
  46. Yun, S.-I., Kim, S.-Y., Rice, C. M. & Lee, Y.-M. ( 2003; ). Development and application of a reverse genetics system for Japanese encephalitis virus. J Virol 77, 6450–6465.[CrossRef]
    [Google Scholar]
  47. Zhao, Z., Date, T., Li, Y., Kato, T., Miyamoto, M., Yasui, K. & Wakita, T. ( 2005; ). Characterization of the E-138 (Glu/Lys) mutation in Japanese encephalitis virus by using a stable, full-length, infectious cDNA clone. J Gen Virol 86, 2209–2220.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81909-0
Loading
/content/journal/jgv/10.1099/vir.0.81909-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error