1887

Abstract

Structural data support a model where – following proteolytic cleavage – the amino-terminal domain of human immunodeficiency virus type 1 (HIV-1) capsid protein refolds into a -hairpin/helix tertiary structure that is stabilized by a buried salt bridge forming between the positively charged primary imino group of a proline residue and the negatively charged carboxyl group of a conserved aspartate. In order to evaluate the contribution of either side-chain length or charge to the formation of infectious virus capsids, aspartate 183 was substituted for glutamate or asparagine in the viral context. It was found that both modifications abolished infectivity of the corresponding viruses in permissive T lymphocytes, although none of particle assembly and release, RNA encapsidation, incorporation of Env glycoproteins and packaging of cyclophilin A were impaired. However, whereas biophysical analyses of mutant virions yielded wild-type-like particle sizes and densities, electron microscopy revealed aberrant core morphologies that could be attributed to either increased (D183N) or reduced (D183E) capsid stability. Although the two amino acid substitutions had opposing effects upon core stability, both mutants were shown to exhibit a severe block in early reverse transcription, underscoring the importance of correct salt-bridge formation for early steps of virus replication.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81894-0
2007-01-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/1/207.html?itemId=/content/journal/jgv/10.1099/vir.0.81894-0&mimeType=html&fmt=ahah

References

  1. Bouamr, F., Cornilescu, C. C., Goff, S. P., Tjandra, N. & Carter, C. A. ( 2005; ). Structural and dynamics studies of the D54A mutant of human T cell leukemia virus-1 capsid protein. J Biol Chem 280, 6792–6801.[CrossRef]
    [Google Scholar]
  2. Bukrinsky, M. I., Sharova, N., Dempsey, M. P., Stanwick, T. L., Bukrinskaya, A. G., Haggerty, S. & Stevenson, M. ( 1992; ). Active nuclear import of human immunodeficiency virus type 1 preintegration complexes. Proc Natl Acad Sci U S A 89, 6580–6584.[CrossRef]
    [Google Scholar]
  3. Bukrinsky, M., Sharova, N. & Stevenson, M. ( 1993; ). Human immunodeficiency virus type 1 2-LTR circles reside in a nucleoprotein complex which is different from the preintegration complex. J Virol 67, 6863–6865.
    [Google Scholar]
  4. Campos-Olivas, R. & Summers, M. F. ( 1999; ). Backbone dynamics of the N-terminal domain of the HIV-1 capsid protein and comparison with the G94D mutant conferring cyclosporin resistance/dependence. Biochemistry 38, 10262–10271.[CrossRef]
    [Google Scholar]
  5. Coffin, J. M. ( 1992; ). Genetic diversity and evolution of retroviruses. Curr Top Microbiol Immunol 176, 143–164.
    [Google Scholar]
  6. Cornilescu, C. C., Bouamr, F., Yao, X., Carter, C. & Tjandra, N. ( 2001; ). Structural analysis of the N-terminal domain of the human T-cell leukemia virus capsid protein. J Mol Biol 306, 783–797.[CrossRef]
    [Google Scholar]
  7. Dayhoff, M. O., Schwartz, R. M. & Orcutt, B. C. ( 1978; ). A model of evolutionary change in proteins. In Atlas of Protein Sequence and Structure, vol. 5, pp. 345–352. Edited by M. O. Dayhoff. Washington, DC: National Biomedical Research Foundation.
  8. Dorfman, T., Bukovsky, A., Ohagen, A., Hoglund, S. & Gottlinger, H. G. ( 1994; ). Functional domains of the capsid protein of human immunodeficiency virus type 1. J Virol 68, 8180–8187.
    [Google Scholar]
  9. Fitzon, T., Leschonsky, B., Bieler, K., Paulus, C., Schroder, J., Wolf, H. & Wagner, R. ( 2000; ). Proline residues in the HIV-1 NH2-terminal capsid domain: structure determinants for proper core assembly and subsequent steps of early replication. Virology 268, 294–307.[CrossRef]
    [Google Scholar]
  10. Forshey, B. M., von Schwedler, U., Sundquist, W. I. & Aiken, C. ( 2002; ). Formation of a human immunodeficiency virus type 1 core of optimal stability is crucial for viral replication. J Virol 76, 5667–5677.[CrossRef]
    [Google Scholar]
  11. Franke, E. K., Yuan, H. E. & Luban, J. ( 1994; ). Specific incorporation of cyclophilin A into HIV-1 virions. Nature 372, 359–362.[CrossRef]
    [Google Scholar]
  12. Fuller, S. D., Wilk, T., Gowen, B. E., Krausslich, H. G. & Vogt, V. M. ( 1997; ). Cryo-electron microscopy reveals ordered domains in the immature HIV-1 particle. Curr Biol 7, 729–738.[CrossRef]
    [Google Scholar]
  13. Gamble, T. R., Vajdos, F. F., Yoo, S., Worthylake, D., Houseweart, M., Sundquist, W. J. & Hill, C. P. ( 1996; ). Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid. Cell 87, 1285–1294.[CrossRef]
    [Google Scholar]
  14. Gamble, T. R., Yoo, S., Vajdos, F. F., von Schwedler, U. K., Worthylake, D. K., Wang, H., McCutcheon, J. P., Sundquist, W. I. & Hill, C. P. ( 1997; ). Structure of the carboxyl-terminal dimerization domain of the HIV-1 capsid protein. Science 278, 849–853.[CrossRef]
    [Google Scholar]
  15. Ganser, B. K., Li, S., Klishko, V. Y., Finch, J. T. & Sundquist, W. I. ( 1999; ). Assembly and analysis of conical models for the HIV-1 core. Science 283, 80–83.[CrossRef]
    [Google Scholar]
  16. Gheysen, D., Jacobs, E., de Foresta, F., Thiriart, C., Francotte, M., Thines, D. & De Wilde, M. ( 1989; ). Assembly and release of HIV-1 precursor Pr55gag virus-like particles from recombinant baculovirus-infected insect cells. Cell 59, 103–112.[CrossRef]
    [Google Scholar]
  17. Gitti, R. K., Lee, B. M., Walker, J., Summers, M. F., Yoo, S. & Sundquist, W. I. ( 1996; ). Structure of the amino-terminal core domain of the HIV-1 capsid protein. Science 273, 231–235.[CrossRef]
    [Google Scholar]
  18. Göttlinger, H. G., Sodroski, J. G. & Haseltine, W. A. ( 1989; ). Role of capsid precursor processing and myristoylation in morphogenesis and infectivity of human immunodeficiency virus type 1. Proc Natl Acad Sci U S A 86, 5781–5785.[CrossRef]
    [Google Scholar]
  19. Kaplan, A. H., Zack, J. A., Knigge, M., Paul, D. A., Kempf, D. J., Norbeck, D. W. & Swanstrom, R. ( 1993; ). Partial inhibition of the human immunodeficiency virus type 1 protease results in aberrant virus assembly and the formation of noninfectious particles. J Virol 67, 4050–4055.
    [Google Scholar]
  20. Louwagie, J., McCutchan, F. E., Peeters, M., Brennan, T. P., Sanders-Buell, E., Eddy, G. A., van der Groen, G., Fransen, K., Gershy-Damet, G. M. & other authors ( 1993; ). Phylogenetic analysis of gag genes from 70 international HIV-1 isolates provides evidence for multiple genotypes. AIDS 7, 769–780.[CrossRef]
    [Google Scholar]
  21. Mammano, F., Ohagen, A., Hoglund, S. & Gottlinger, H. G. ( 1994; ). Role of the major homology region of human immunodeficiency virus type 1 in virion morphogenesis. J Virol 68, 4927–4936.
    [Google Scholar]
  22. Mayo, K., Huseby, D., McDermott, J., Arvidson, B., Finlay, L. & Barklis, E. ( 2003; ). Retrovirus capsid protein assembly arrangements. J Mol Biol 325, 225–237.[CrossRef]
    [Google Scholar]
  23. Mergener, K., Facke, M., Welker, R., Brinkmann, V., Gelderblom, H. R. & Krausslich, H. G. ( 1992; ). Analysis of HIV particle formation using transient expression of subviral constructs in mammalian cells. Virology 186, 25–39.[CrossRef]
    [Google Scholar]
  24. Mitsudomi, T., Steinberg, S. M., Nau, M. M., Carbone, D., D'Amico, D., Bodner, S., Oie, H. K., Linnoila, R. I., Mulshine, J. L. & other authors ( 1992; ). p53 gene mutations in non-small-cell lung cancer cell lines and their correlation with the presence of ras mutations and clinical features. Oncogene 7, 171–180.
    [Google Scholar]
  25. Momany, C., Kovari, L. C., Prongay, A. J., Keller, W., Gitti, R. K., Lee, B. M., Gorbalenya, A. E., Tong, L., McClure, J. & other authors ( 1996; ). Crystal structure of dimeric HIV-1 capsid protein. Nat Struct Biol 3, 763–770.[CrossRef]
    [Google Scholar]
  26. Nermut, M. V., Hockley, D. J., Bron, P., Thomas, D., Zhang, W. H. & Jones, I. M. ( 1998; ). Further evidence for hexagonal organization of HIV gag protein in prebudding assemblies and immature virus-like particles. J Struct Biol 123, 143–149.[CrossRef]
    [Google Scholar]
  27. Niedrig, M., Hinkula, J., Weigelt, W., L'Age-Stehr, J., Pauli, G., Rosen, J. & Wahren, B. ( 1989; ). Epitope mapping of monoclonal antibodies against human immunodeficiency virus type 1 structural proteins by using peptides. J Virol 63, 3525–3528.
    [Google Scholar]
  28. Pettit, S. C., Moody, M. D., Wehbie, R. S., Kaplan, A. H., Nantermet, P. V., Klein, C. A. & Swanstrom, R. ( 1994; ). The p2 domain of human immunodeficiency virus type 1 Gag regulates sequential proteolytic processing and is required to produce fully infectious virions. J Virol 68, 8017–8027.
    [Google Scholar]
  29. Ratner, L., Fisher, A., Jagodzinski, L. L., Mitsuya, H., Liou, R. S., Gallo, R. C. & Wong-Staal, F. ( 1987; ). Complete nucleotide sequences of functional clones of the AIDS virus. AIDS Res Hum Retroviruses 3, 57–69.[CrossRef]
    [Google Scholar]
  30. Reicin, A. S., Ohagen, A., Yin, L., Hoglund, S. & Goff, S. P. ( 1996; ). The role of Gag in human immunodeficiency virus type 1 virion morphogenesis and early steps of the viral life cycle. J Virol 70, 8645–8652.
    [Google Scholar]
  31. Reynolds, E. S. ( 1963; ). The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17, 208–212.[CrossRef]
    [Google Scholar]
  32. Rulli, S. J., Jr, Muriaux, D., Nagashima, K., Mirro, J., Oshima, M., Baumann, J. G. & Rein, A. ( 2006; ). Mutant murine leukemia virus Gag proteins lacking proline at the N-terminus of the capsid domain block infectivity in virions containing wild-type Gag. Virology 347, 364–371.[CrossRef]
    [Google Scholar]
  33. Sigler, P. B., Blow, D. M., Matthews, B. W. & Henderson, R. ( 1968; ). Structure of crystalline-chymotrypsin. II. A preliminary report including a hypothesis for the activation mechanism. J Mol Biol 35, 143–164.[CrossRef]
    [Google Scholar]
  34. Tang, S., Murakami, T., Agresta, B. E., Campbell, S., Freed, E. O. & Levin, J. G. ( 2001; ). Human immunodeficiency virus type 1 N-terminal capsid mutants that exhibit aberrant core morphology and are blocked in initiation of reverse transcription in infected cells. J Virol 75, 9357–9366.[CrossRef]
    [Google Scholar]
  35. Tang, C., Ndassa, Y. & Summers, M. F. ( 2002; ). Structure of the N-terminal 283-residue fragment of the immature HIV-1 Gag polyprotein. Nat Struct Biol 9, 537–543.
    [Google Scholar]
  36. Tang, S., Murakami, T., Cheng, N., Steven, A. C., Freed, E. O. & Levin, J. G. ( 2003; ). Human immunodeficiency virus type 1 N-terminal capsid mutants containing cores with abnormally high levels of capsid protein and virtually no reverse transcriptase. J Virol 77, 12592–12602.[CrossRef]
    [Google Scholar]
  37. Thali, M., Bukovsky, A., Kondo, E., Rosenwirth, B., Walsh, C. T., Sodroski, J. & Gottlinger, H. G. ( 1994; ). Functional association of cyclophilin A with HIV-1 virions. Nature 372, 363–365.[CrossRef]
    [Google Scholar]
  38. Trono, D., Feinberg, M. B. & Baltimore, D. ( 1989; ). HIV-1 Gag mutants can dominantly interfere with the replication of the wild-type virus. Cell 59, 113–120.[CrossRef]
    [Google Scholar]
  39. Vogt, V. M. ( 1996; ). Proteolytic processing and particle maturation. Curr Top Microbiol Immunol 214, 95–131.
    [Google Scholar]
  40. von Poblotzki, A., Wagner, R., Niedrig, M., Wanner, G., Wolf, H. & Modrow, S. ( 1993; ). Identification of a region in the Pr55gag-polyprotein essential for HIV-1 particle formation. Virology 193, 981–985.[CrossRef]
    [Google Scholar]
  41. von Schwedler, U. K., Stemmler, T. L., Klishko, V. Y., Li, S., Albertine, K. H., Davis, D. R. & Sundquist, W. I. ( 1998; ). Proteolytic refolding of the HIV-1 capsid protein amino-terminus facilitates viral core assembly. EMBO J 17, 1555–1568.[CrossRef]
    [Google Scholar]
  42. Wagner, R., Fliessbach, H., Wanner, G., Motz, M., Niedrig, M., Deby, G., von Brunn, A. & Wolf, H. ( 1992; ). Studies on processing, particle formation, and immunogenicity of the HIV-1 gag gene product: a possible component of a HIV vaccine. Arch Virol 127, 117–137.[CrossRef]
    [Google Scholar]
  43. Wang, C. T. & Barklis, E. ( 1993; ). Assembly, processing, and infectivity of human immunodeficiency virus type 1 gag mutants. J Virol 67, 4264–4273.
    [Google Scholar]
  44. Wiegers, K., Rutter, G., Kottler, H., Tessmer, U., Hohenberg, H. & Krausslich, H. G. ( 1998; ). Sequential steps in human immunodeficiency virus particle maturation revealed by alterations of individual Gag polyprotein cleavage sites. J Virol 72, 2846–2854.
    [Google Scholar]
  45. Wills, J. W. & Craven, R. C. ( 1991; ). Form, function, and use of retroviral gag proteins. AIDS 5, 639–654.[CrossRef]
    [Google Scholar]
  46. Wolf, H., Modrow, S., Soutschek, E., Motz, M., Grunow, R. & Döbl, H. ( 1990; ). Production, mapping and biological characterisation of monoclonal antibodies to the core protein (p24) of the human immunodeficiency virus type 1. AIDS-Forsch 1, 24–29.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81894-0
Loading
/content/journal/jgv/10.1099/vir.0.81894-0
Loading

Data & Media loading...

Supplements

vol. , part 1, pp. 207 – 216

Primers used to amplify intermediates of reverse transcription [ PDF] (129 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error