1887

Abstract

Substitution of lentiviral -acting elements by heterologous sequences might allow the safety of lentiviral vectors to be enhanced by reducing the risk of homologous recombination and vector mobilization. Therefore, a substitution and deletion analysis of the R region of simian immunodeficiency virus (SIV)-based vectors was performed and the effect of the modifications on packaging and transfer by SIV and human immunodeficiency virus type 1 (HIV-1) particles was analysed. Deletion of the first 7 nt of R reduced vector titres by 10- to 20-fold, whilst deletion of the entire R region led to vector titres that were 1500-fold lower. Replacement of the R region of SIV-based vectors by HIV-1 or Moloney murine sarcoma virus R regions partially restored vector titres. A non-retroviral cellular sequence was also functional, although to a lesser extent. In the absence of , modification of the R region had only minor effects on cytoplasmic RNA stability, steady-state levels of vector RNA and packaging, consistent with the known primary function of R during reverse transcription. Although the SIV R region of SIV-based vectors could be replaced functionally by heterologous sequences, the same modifications of R led to a severe replication defect in the context of a replication-competent SIV. As SIV-based vectors containing the HIV-1 R region were transferred less efficiently by HIV-1 particles than wild-type SIV vectors, a match between R and -acting elements of the vector construct seems to be more important than a match between R and the Gag or Pol proteins of the vector particle.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81883-0
2006-08-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/8/2297.html?itemId=/content/journal/jgv/10.1099/vir.0.81883-0&mimeType=html&fmt=ahah

References

  1. Adachi, A., Gendelman, H. E., Koenig, S., Folks, T., Willey, R., Rabson, A. & Martin, M. A. ( 1986; ). Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol 59, 284–291.
    [Google Scholar]
  2. Allain, B., Rascle, J.-B., de Rocquigny, H., Roques, B. & Darlix, J.-L. ( 1998; ). CIS elements and trans-acting factors required for minus strand DNA transfer during reverse transcription of the genomic RNA of murine leukemia virus. J Mol Biol 277, 225–235.[CrossRef]
    [Google Scholar]
  3. Berkhout, B., Klaver, B. & Das, A. T. ( 1995a; ). A conserved hairpin structure predicted for the poly(A) signal of human and simian immunodeficiency viruses. Virology 207, 276–281.[CrossRef]
    [Google Scholar]
  4. Berkhout, B., van Wamel, J. & Klaver, B. ( 1995b; ). Requirements for DNA strand transfer during reverse transcription in mutant HIV-1 virions. J Mol Biol 252, 59–69.[CrossRef]
    [Google Scholar]
  5. Berkhout, B., Vastenhouw, N. L., Klasens, B. I. & Huthoff, H. ( 2001; ). Structural features in the HIV-1 repeat region facilitate strand transfer during reverse transcription. RNA 7, 1097–1114.[CrossRef]
    [Google Scholar]
  6. Bukovsky, A. A., Song, J.-P. & Naldini, L. ( 1999; ). Interaction of human immunodeficiency virus-derived vectors with wild-type virus in transduced cells. J Virol 73, 7087–7092.
    [Google Scholar]
  7. Chackerian, B., Haigwood, N. L. & Overbaugh, J. ( 1995; ). Characterization of a CD4-expressing macaque cell line that can detect virus after a single replication cycle and can be infected by diverse simian immunodeficiency virus isolates. Virology 213, 386–394.[CrossRef]
    [Google Scholar]
  8. Chang, L.-J., McNulty, E. & Martin, M. ( 1993; ). Human immunodeficiency viruses containing heterologous enhancer/promoters are replication competent and exhibit different lymphocyte tropisms. J Virol 67, 743–752.
    [Google Scholar]
  9. Cheslock, S. R., Anderson, J. A., Hwang, C. K., Pathak, V. K. & Hu, W.-S. ( 2000; ). Utilization of nonviral sequences for minus-strand DNA transfer and gene reconstitution during retroviral replication. J Virol 74, 9571–9579.[CrossRef]
    [Google Scholar]
  10. Clever, J. L., Eckstein, D. A. & Parslow, T. G. ( 1999; ). Genetic dissociation of the encapsidation and reverse transcription functions in the 5′ R region of human immunodeficiency virus type 1. J Virol 73, 101–109.
    [Google Scholar]
  11. Clever, J. L., Mirandar, D., Jr & Parslow, T. G. ( 2002; ). RNA structure and packaging signals in the 5′ leader region of the human immunodeficiency virus type 1 genome. J Virol 76, 12381–12387.[CrossRef]
    [Google Scholar]
  12. Coffin, J. M. ( 1990; ). Retroviridae and their replication. in Fields Virology, 2nd edn, vol. 2, pp. 1437–1500. Edited by B. N. Fields & D. M. Knipe. New York: Raven Press.
  13. Cullen, B. R. ( 1992; ). Mechanism of action of regulatory proteins encoded by complex retroviruses. Microbiol Rev 56, 375–394.
    [Google Scholar]
  14. Daelemans, D., de Clercq, E. & Vandamme, A.-M. ( 2000; ). Control of RNA initiation and elongation at the HIV promoter. AIDS Rev 2, 229–240.
    [Google Scholar]
  15. Dang, Q. & Hu, W.-S. ( 2001; ). Effects of homology length in the repeat region on minus-strand DNA transfer and retroviral replication. J Virol 75, 809–820.[CrossRef]
    [Google Scholar]
  16. Das, A. T., Klaver, B., Klasens, B. I., van Wamel, J. L. & Berkhout, B. ( 1997; ). A conserved hairpin motif in the R-U5 region of the human immunodeficiency virus type 1 RNA genome is essential for replication. J Virol 71, 2346–2356.
    [Google Scholar]
  17. Das, A. T., Klaver, B. & Berkhout, B. ( 1998; ). The 5′ and 3′ TAR elements of human immunodeficiency virus exert effects at several points in the virus life cycle. J Virol 72, 9217–9223.
    [Google Scholar]
  18. DuBridge, R. B., Tang, P., Hsia, H. C., Leong, P.-M., Miller, J. H. & Calos, M. P. ( 1987; ). Analysis of mutation in human cells by using an Epstein–Barr virus shuttle system. Mol Cell Biol 7, 379–387.
    [Google Scholar]
  19. Fouchier, R. A., Meyer, B. E., Simon, J. H., Fischer, U. & Malim, M. H. ( 1997; ). HIV-1 infection of non-dividing cells: evidence that the amino-terminal basic region of the viral matrix protein is important for Gag processing but not for post-entry nuclear import. EMBO J 16, 4531–4539.[CrossRef]
    [Google Scholar]
  20. Gilboa, E., Mitra, S. W., Goff, S. & Baltimore, D. ( 1979; ). A detailed model of reverse transcription and tests of crucial aspects. Cell 18, 93–100.[CrossRef]
    [Google Scholar]
  21. Grunwald, T., Pedersen, F. S., Wagner, R. & Überla, K. ( 2004; ). Reducing mobilization of simian immunodeficiency virus based vectors by primer complementation. J Gene Med 6, 147–154.[CrossRef]
    [Google Scholar]
  22. Guan, Y., Whitney, J. B., Detorio, M. & Wainberg, M. A. ( 2001; ). Construction and in vitro properties of a series of attenuated simian immunodeficiency viruses with all accessory genes deleted. J Virol 75, 4056–4067.[CrossRef]
    [Google Scholar]
  23. Gundlach, B. R., Linhart, H., Dittmer, U. & 7 other authors ( 1997; ). Construction, replication, and immunogenic properties of a simian immunodeficiency virus expressing interleukin-2. J Virol 71, 2225–2232.
    [Google Scholar]
  24. Guntaka, R. V. ( 1993; ). Transcription termination and polyadenylation in retroviruses. Microbiol Rev 57, 511–521.
    [Google Scholar]
  25. Hansen, A. C., Grunwald, T., Lund, A. H., Schmitz, A., Duch, M., Überla, K. & Pedersen, F. S. ( 2001; ). Transfer of primer binding site-mutated simian immunodeficiency virus vectors by genetically engineered artificial and hybrid tRNA-like primers. J Virol 75, 4922–4928.[CrossRef]
    [Google Scholar]
  26. Harrich, D., Ulich, C. & Gaynor, R. B. ( 1996; ). A critical role for the TAR element in promoting efficient human immunodeficiency virus type 1 reverse transcription. J Virol 70, 4017–4027.
    [Google Scholar]
  27. Harrich, D., Hooker, C. W. & Parry, E. ( 2000; ). The human immunodeficiency virus type 1 TAR RNA upper stem–loop plays distinct roles in reverse transcription and RNA packaging. J Virol 74, 5639–5646.[CrossRef]
    [Google Scholar]
  28. Helga-Maria, C., Hammarskjold, M.-L. & Rekosh, D. ( 1999; ). An intact TAR element and cytoplasmic localization are necessary for efficient packaging of human immunodeficiency virus type 1 genomic RNA. J Virol 73, 4127–4135.
    [Google Scholar]
  29. Klaver, B. & Berkhout, B. ( 1994; ). Premature strand transfer by the HIV-1 reverse transcriptase during strong-stop DNA synthesis. Nucleic Acids Res 22, 137–144.[CrossRef]
    [Google Scholar]
  30. Kulpa, D., Topping, R. & Telesnitsky, A. ( 1997; ). Determination of the site of first strand transfer during Moloney murine leukemia virus reverse transcription and identification of strand transfer-associated reverse transcriptase errors. EMBO J 16, 856–865.[CrossRef]
    [Google Scholar]
  31. Lee, Y., Kim, M., Han, J., Yeom, K.-H., Lee, S., Baek, S. H. & Kim, V. N. ( 2004; ). MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23, 4051–4060.[CrossRef]
    [Google Scholar]
  32. Lobel, L. I. & Goff, S. P. ( 1985; ). Reverse transcription of retroviral genomes: mutations in the terminal repeat sequences. J Virol 53, 447–455.
    [Google Scholar]
  33. Malim, M. H., Hauber, J., Fenrick, R. & Cullen, B. R. ( 1988; ). Immunodeficiency virus rev trans-activator modulates the expression of the viral regulatory genes. Nature 335, 181–183.[CrossRef]
    [Google Scholar]
  34. McBride, M. S., Schwartz, M. D. & Panganiban, A. T. ( 1997; ). Efficient encapsidation of human immunodeficiency virus type 1 vectors and further characterization of cis elements required for encapsidation. J Virol 71, 4544–4554.
    [Google Scholar]
  35. Means, R. E., Greenough, T. & Desrosiers, R. C. ( 1997; ). Neutralization sensitivity of cell culture-passaged simian immunodeficiency virus. J Virol 71, 7895–7902.
    [Google Scholar]
  36. Moore, R., Dixon, M., Smith, R., Peters, G. & Dickson, C. ( 1987; ). Complete nucleotide sequence of a milk-transmitted mouse mammary tumor virus: two frameshift suppression events are required for translation of gag and pol. J Virol 61, 480–490.
    [Google Scholar]
  37. Ohi, Y. & Clever, J. L. ( 2000; ). Sequences in the 5′ and 3′ R elements of human immunodeficiency virus type 1 critical for efficient reverse transcription. J Virol 74, 8324–8334.[CrossRef]
    [Google Scholar]
  38. Patel, J., Wang, S.-W., Izmailova, E. & Aldovini, A. ( 2003; ). The simian immunodeficiency virus 5′ untranslated leader sequence plays a role in intracellular viral protein accumulation and in RNA packaging. J Virol 77, 6284–6292.[CrossRef]
    [Google Scholar]
  39. Rabson, A. B. & Graves, B. J. ( 1997; ). Synthesis and processing of viral RNA. In Retroviruses, pp. 205–261. Edited by J. M. Coffin, S. H. Hughes & H. E. Varmus. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  40. Ramsey, C. A. & Panganiban, A. T. ( 1993; ). Replication of the retroviral terminal repeat sequence during in vivo reverse transcription. J Virol 67, 4114–4121.
    [Google Scholar]
  41. Schnell, T., Foley, P., Wirth, M., Münch, J. & Überla, K. ( 2000; ). Development of a self-inactivating, minimal lentivirus vector based on simian immunodeficiency virus. Hum Gene Ther 11, 439–447.[CrossRef]
    [Google Scholar]
  42. Sodroski, J., Trus, M., Perkins, D., Patarca, R., Wong-Staal, F., Gelmann, E., Gallo, R. & Haseltine, W. A. ( 1984; ). Repetitive structure in the long-terminal-repeat element of a type II human T-cell leukemia virus. Proc Natl Acad Sci U S A 81, 4617–4621.[CrossRef]
    [Google Scholar]
  43. Sommer, P., Vartanian, J.-P., Wachsmuth, M., Henry, M., Guetard, D. & Wain-Hobson, S. ( 2004; ). Anti-termination by SIV Tat requires flexibility of the nascent TAR structure. J Mol Biol 344, 11–28.[CrossRef]
    [Google Scholar]
  44. Soneoka, Y., Cannon, P. M., Ramsdale, E. E., Griffiths, J. C., Romano, G., Kingsman, S. M. & Kingsman, A. J. ( 1995; ). A transient three-plasmid expression system for the production of high titer retroviral vectors. Nucleic Acids Res 23, 628–633.[CrossRef]
    [Google Scholar]
  45. Strappe, P. M., Greatorex, J., Thomas, J., Biswas, P., McCann, E. & Lever, A. M. L. ( 2003; ). The packaging signal of simian immunodeficiency virus is upstream of the major splice donor at a distance from the RNA cap site similar to that of human immunodeficiency virus types 1 and 2. J Gen Virol 84, 2423–2430.[CrossRef]
    [Google Scholar]
  46. Swain, A. & Coffin, J. M. ( 1989; ). Polyadenylation at correct sites in genome RNA is not required for retrovirus replication or genome encapsidation. J Virol 63, 3301–3306.
    [Google Scholar]
  47. Swain, A. & Coffin, J. M. ( 1993; ). Influence of sequences in the long terminal repeat and flanking cell DNA on polyadenylation of retroviral transcripts. J Virol 67, 6265–6269.
    [Google Scholar]
  48. Swanstrom, R., Varmus, H. E. & Bishop, J. M. ( 1981; ). The terminal redundancy of the retrovirus genome facilitates chain elongation by reverse transcriptase. J Biol Chem 256, 1115–1121.
    [Google Scholar]
  49. Topping, R., Demoitie, M.-A., Shin, N. H. & Telesnitsky, A. ( 1998; ). Cis-acting elements required for strong stop acceptor template selection during Moloney murine leukemia virus reverse transcription. J Mol Biol 281, 1–15.[CrossRef]
    [Google Scholar]
  50. Verhoef, K., Marzio, G., Hillen, W., Bujard, H. & Berkhout, B. ( 2001; ). Strict control of human immunodeficiency virus type 1 replication by a genetic switch: Tet for Tat. J Virol 75, 979–987.[CrossRef]
    [Google Scholar]
  51. Wagner, R., Graf, M., Bieler, K., Wolf, H., Grunwald, T., Foley, P. & Überla, K. ( 2000; ). Rev-independent expression of synthetic gag-pol genes of human immunodeficiency virus type 1 and simian immunodeficiency virus: implications for the safety of lentiviral vectors. Hum Gene Ther 11, 2403–2413.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81883-0
Loading
/content/journal/jgv/10.1099/vir.0.81883-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error