1887

Abstract

Substitution of lentiviral -acting elements by heterologous sequences might allow the safety of lentiviral vectors to be enhanced by reducing the risk of homologous recombination and vector mobilization. Therefore, a substitution and deletion analysis of the R region of simian immunodeficiency virus (SIV)-based vectors was performed and the effect of the modifications on packaging and transfer by SIV and human immunodeficiency virus type 1 (HIV-1) particles was analysed. Deletion of the first 7 nt of R reduced vector titres by 10- to 20-fold, whilst deletion of the entire R region led to vector titres that were 1500-fold lower. Replacement of the R region of SIV-based vectors by HIV-1 or Moloney murine sarcoma virus R regions partially restored vector titres. A non-retroviral cellular sequence was also functional, although to a lesser extent. In the absence of , modification of the R region had only minor effects on cytoplasmic RNA stability, steady-state levels of vector RNA and packaging, consistent with the known primary function of R during reverse transcription. Although the SIV R region of SIV-based vectors could be replaced functionally by heterologous sequences, the same modifications of R led to a severe replication defect in the context of a replication-competent SIV. As SIV-based vectors containing the HIV-1 R region were transferred less efficiently by HIV-1 particles than wild-type SIV vectors, a match between R and -acting elements of the vector construct seems to be more important than a match between R and the Gag or Pol proteins of the vector particle.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81883-0
2006-08-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/8/2297.html?itemId=/content/journal/jgv/10.1099/vir.0.81883-0&mimeType=html&fmt=ahah

References

  1. Adachi A., Gendelman H. E., Koenig S., Folks T., Willey R., Rabson A., Martin M. A. 1986; Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol 59:284–291
    [Google Scholar]
  2. Allain B., Rascle J.-B., de Rocquigny H., Roques B., Darlix J.-L. 1998; CIS elements and trans -acting factors required for minus strand DNA transfer during reverse transcription of the genomic RNA of murine leukemia virus. J Mol Biol 277:225–235 [CrossRef]
    [Google Scholar]
  3. Berkhout B., Klaver B., Das A. T. 1995a; A conserved hairpin structure predicted for the poly(A) signal of human and simian immunodeficiency viruses. Virology 207:276–281 [CrossRef]
    [Google Scholar]
  4. Berkhout B., van Wamel J., Klaver B. 1995b; Requirements for DNA strand transfer during reverse transcription in mutant HIV-1 virions. J Mol Biol 252:59–69 [CrossRef]
    [Google Scholar]
  5. Berkhout B., Vastenhouw N. L., Klasens B. I., Huthoff H. 2001; Structural features in the HIV-1 repeat region facilitate strand transfer during reverse transcription. RNA 7:1097–1114 [CrossRef]
    [Google Scholar]
  6. Bukovsky A. A., Song J.-P., Naldini L. 1999; Interaction of human immunodeficiency virus-derived vectors with wild-type virus in transduced cells. J Virol 73:7087–7092
    [Google Scholar]
  7. Chackerian B., Haigwood N. L., Overbaugh J. 1995; Characterization of a CD4-expressing macaque cell line that can detect virus after a single replication cycle and can be infected by diverse simian immunodeficiency virus isolates. Virology 213:386–394 [CrossRef]
    [Google Scholar]
  8. Chang L.-J., McNulty E., Martin M. 1993; Human immunodeficiency viruses containing heterologous enhancer/promoters are replication competent and exhibit different lymphocyte tropisms. J Virol 67:743–752
    [Google Scholar]
  9. Cheslock S. R., Anderson J. A., Hwang C. K., Pathak V. K., Hu W.-S. 2000; Utilization of nonviral sequences for minus-strand DNA transfer and gene reconstitution during retroviral replication. J Virol 74:9571–9579 [CrossRef]
    [Google Scholar]
  10. Clever J. L., Eckstein D. A., Parslow T. G. 1999; Genetic dissociation of the encapsidation and reverse transcription functions in the 5′ R region of human immunodeficiency virus type 1. J Virol 73:101–109
    [Google Scholar]
  11. Clever J. L., Mirandar D. Jr, Parslow T. G. 2002; RNA structure and packaging signals in the 5′ leader region of the human immunodeficiency virus type 1 genome. J Virol 76:12381–12387 [CrossRef]
    [Google Scholar]
  12. Coffin J. M. 1990; Retroviridae and their replication. in Fields Virology . , 2nd edn. vol 2 pp  1437–1500 Edited by Fields B. N., Knipe D. M. New York: Raven Press;
  13. Cullen B. R. 1992; Mechanism of action of regulatory proteins encoded by complex retroviruses. Microbiol Rev 56:375–394
    [Google Scholar]
  14. Daelemans D., de Clercq E., Vandamme A.-M. 2000; Control of RNA initiation and elongation at the HIV promoter. AIDS Rev 2:229–240
    [Google Scholar]
  15. Dang Q., Hu W.-S. 2001; Effects of homology length in the repeat region on minus-strand DNA transfer and retroviral replication. J Virol 75:809–820 [CrossRef]
    [Google Scholar]
  16. Das A. T., Klaver B., Klasens B. I., van Wamel J. L., Berkhout B. 1997; A conserved hairpin motif in the R-U5 region of the human immunodeficiency virus type 1 RNA genome is essential for replication. J Virol 71:2346–2356
    [Google Scholar]
  17. Das A. T., Klaver B., Berkhout B. 1998; The 5′ and 3′ TAR elements of human immunodeficiency virus exert effects at several points in the virus life cycle. J Virol 72:9217–9223
    [Google Scholar]
  18. DuBridge R. B., Tang P., Hsia H. C., Leong P.-M., Miller J. H., Calos M. P. 1987; Analysis of mutation in human cells by using an Epstein–Barr virus shuttle system. Mol Cell Biol 7:379–387
    [Google Scholar]
  19. Fouchier R. A., Meyer B. E., Simon J. H., Fischer U., Malim M. H. 1997; HIV-1 infection of non-dividing cells: evidence that the amino-terminal basic region of the viral matrix protein is important for Gag processing but not for post-entry nuclear import. EMBO J 16:4531–4539 [CrossRef]
    [Google Scholar]
  20. Gilboa E., Mitra S. W., Goff S., Baltimore D. 1979; A detailed model of reverse transcription and tests of crucial aspects. Cell 18:93–100 [CrossRef]
    [Google Scholar]
  21. Grunwald T., Pedersen F. S., Wagner R., Überla K. 2004; Reducing mobilization of simian immunodeficiency virus based vectors by primer complementation. J Gene Med 6:147–154 [CrossRef]
    [Google Scholar]
  22. Guan Y., Whitney J. B., Detorio M., Wainberg M. A. 2001; Construction and in vitro properties of a series of attenuated simian immunodeficiency viruses with all accessory genes deleted. J Virol 75:4056–4067 [CrossRef]
    [Google Scholar]
  23. Gundlach B. R., Linhart H., Dittmer U. & 7 other authors 1997; Construction, replication, and immunogenic properties of a simian immunodeficiency virus expressing interleukin-2. J Virol 71:2225–2232
    [Google Scholar]
  24. Guntaka R. V. 1993; Transcription termination and polyadenylation in retroviruses. Microbiol Rev 57:511–521
    [Google Scholar]
  25. Hansen A. C., Grunwald T., Lund A. H., Schmitz A., Duch M., Überla K., Pedersen F. S. 2001; Transfer of primer binding site-mutated simian immunodeficiency virus vectors by genetically engineered artificial and hybrid tRNA-like primers. J Virol 75:4922–4928 [CrossRef]
    [Google Scholar]
  26. Harrich D., Ulich C., Gaynor R. B. 1996; A critical role for the TAR element in promoting efficient human immunodeficiency virus type 1 reverse transcription. J Virol 70:4017–4027
    [Google Scholar]
  27. Harrich D., Hooker C. W., Parry E. 2000; The human immunodeficiency virus type 1 TAR RNA upper stem–loop plays distinct roles in reverse transcription and RNA packaging. J Virol 74:5639–5646 [CrossRef]
    [Google Scholar]
  28. Helga-Maria C., Hammarskjold M.-L., Rekosh D. 1999; An intact TAR element and cytoplasmic localization are necessary for efficient packaging of human immunodeficiency virus type 1 genomic RNA. J Virol 73:4127–4135
    [Google Scholar]
  29. Klaver B., Berkhout B. 1994; Premature strand transfer by the HIV-1 reverse transcriptase during strong-stop DNA synthesis. Nucleic Acids Res 22:137–144 [CrossRef]
    [Google Scholar]
  30. Kulpa D., Topping R., Telesnitsky A. 1997; Determination of the site of first strand transfer during Moloney murine leukemia virus reverse transcription and identification of strand transfer-associated reverse transcriptase errors. EMBO J 16:856–865 [CrossRef]
    [Google Scholar]
  31. Lee Y., Kim M., Han J., Yeom K.-H., Lee S., Baek S. H., Kim V. N. 2004; MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060 [CrossRef]
    [Google Scholar]
  32. Lobel L. I., Goff S. P. 1985; Reverse transcription of retroviral genomes: mutations in the terminal repeat sequences. J Virol 53:447–455
    [Google Scholar]
  33. Malim M. H., Hauber J., Fenrick R., Cullen B. R. 1988; Immunodeficiency virus rev trans -activator modulates the expression of the viral regulatory genes. Nature 335:181–183 [CrossRef]
    [Google Scholar]
  34. McBride M. S., Schwartz M. D., Panganiban A. T. 1997; Efficient encapsidation of human immunodeficiency virus type 1 vectors and further characterization of cis elements required for encapsidation. J Virol 71:4544–4554
    [Google Scholar]
  35. Means R. E., Greenough T., Desrosiers R. C. 1997; Neutralization sensitivity of cell culture-passaged simian immunodeficiency virus. J Virol 71:7895–7902
    [Google Scholar]
  36. Moore R., Dixon M., Smith R., Peters G., Dickson C. 1987; Complete nucleotide sequence of a milk-transmitted mouse mammary tumor virus: two frameshift suppression events are required for translation of gag and pol . J Virol 61:480–490
    [Google Scholar]
  37. Ohi Y., Clever J. L. 2000; Sequences in the 5′ and 3′ R elements of human immunodeficiency virus type 1 critical for efficient reverse transcription. J Virol 74:8324–8334 [CrossRef]
    [Google Scholar]
  38. Patel J., Wang S.-W., Izmailova E., Aldovini A. 2003; The simian immunodeficiency virus 5′ untranslated leader sequence plays a role in intracellular viral protein accumulation and in RNA packaging. J Virol 77:6284–6292 [CrossRef]
    [Google Scholar]
  39. Rabson A. B., Graves B. J. 1997; Synthesis and processing of viral RNA. In Retroviruses pp  205–261 Edited by Coffin J. M., Hughes S. H., Varmus H. E. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  40. Ramsey C. A., Panganiban A. T. 1993; Replication of the retroviral terminal repeat sequence during in vivo reverse transcription. J Virol 67:4114–4121
    [Google Scholar]
  41. Schnell T., Foley P., Wirth M., Münch J., Überla K. 2000; Development of a self-inactivating, minimal lentivirus vector based on simian immunodeficiency virus. Hum Gene Ther 11:439–447 [CrossRef]
    [Google Scholar]
  42. Sodroski J., Trus M., Perkins D., Patarca R., Wong-Staal F., Gelmann E., Gallo R., Haseltine W. A. 1984; Repetitive structure in the long-terminal-repeat element of a type II human T-cell leukemia virus. Proc Natl Acad Sci U S A 81:4617–4621 [CrossRef]
    [Google Scholar]
  43. Sommer P., Vartanian J.-P., Wachsmuth M., Henry M., Guetard D., Wain-Hobson S. 2004; Anti-termination by SIV Tat requires flexibility of the nascent TAR structure. J Mol Biol 344:11–28 [CrossRef]
    [Google Scholar]
  44. Soneoka Y., Cannon P. M., Ramsdale E. E., Griffiths J. C., Romano G., Kingsman S. M., Kingsman A. J. 1995; A transient three-plasmid expression system for the production of high titer retroviral vectors. Nucleic Acids Res 23:628–633 [CrossRef]
    [Google Scholar]
  45. Strappe P. M., Greatorex J., Thomas J., Biswas P., McCann E., Lever A. M. L. 2003; The packaging signal of simian immunodeficiency virus is upstream of the major splice donor at a distance from the RNA cap site similar to that of human immunodeficiency virus types 1 and 2. J Gen Virol 84:2423–2430 [CrossRef]
    [Google Scholar]
  46. Swain A., Coffin J. M. 1989; Polyadenylation at correct sites in genome RNA is not required for retrovirus replication or genome encapsidation. J Virol 63:3301–3306
    [Google Scholar]
  47. Swain A., Coffin J. M. 1993; Influence of sequences in the long terminal repeat and flanking cell DNA on polyadenylation of retroviral transcripts. J Virol 67:6265–6269
    [Google Scholar]
  48. Swanstrom R., Varmus H. E., Bishop J. M. 1981; The terminal redundancy of the retrovirus genome facilitates chain elongation by reverse transcriptase. J Biol Chem 256:1115–1121
    [Google Scholar]
  49. Topping R., Demoitie M.-A., Shin N. H., Telesnitsky A. 1998; Cis-acting elements required for strong stop acceptor template selection during Moloney murine leukemia virus reverse transcription. J Mol Biol 281:1–15 [CrossRef]
    [Google Scholar]
  50. Verhoef K., Marzio G., Hillen W., Bujard H., Berkhout B. 2001; Strict control of human immunodeficiency virus type 1 replication by a genetic switch: Tet for Tat. J Virol 75:979–987 [CrossRef]
    [Google Scholar]
  51. Wagner R., Graf M., Bieler K., Wolf H., Grunwald T., Foley P., Überla K. 2000; Rev-independent expression of synthetic gag-pol genes of human immunodeficiency virus type 1 and simian immunodeficiency virus: implications for the safety of lentiviral vectors. Hum Gene Ther 11:2403–2413 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81883-0
Loading
/content/journal/jgv/10.1099/vir.0.81883-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error