1887

Abstract

Phage P4 gene encodes the integrase responsible for phage integration into and excision from the chromosome. Here, the data showing that P4 expression is regulated in a complex manner at different levels are presented. First of all, the P promoter is regulated negatively by both Int and Vis, the P4 excisionase. The N-terminal portion of Int appears to be sufficient for such a negative autoregulation, suggesting that the Int N terminus is implicated in DNA binding. Second, full-length transcripts covering the entire gene could be detected only upon P4 infection, whereas in P4 lysogens only short 5′-end covering transcripts were detectable. On the other hand, transcripts covering the 5′-end of were also very abundant upon infection. It thus appears that premature transcription termination and/or mRNA degradation play a role in Int-negative regulation both on the basal prophage transcription and upon infection. Finally, comparison between P transcriptional and translational fusions suggests that Vis regulates Int expression post-transcriptionally. The findings that Vis is also an RNA-binding protein and that Int may be translated from two different start codons have implications on possible regulation models of Int expression.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81875-0
2006-08-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/8/2423.html?itemId=/content/journal/jgv/10.1099/vir.0.81875-0&mimeType=html&fmt=ahah

References

  1. Argos, P., Landy, A., Abremski, K. & 9 other authors ( 1986; ). The integrase family of site-specific recombinases: regional similarities and global diversity. EMBO J 5, 433–440.
    [Google Scholar]
  2. Bishop, A. L., Baker, S., Jenks, S. & 8 other authors ( 2005; ). Analysis of the hypervariable region of the Salmonella enterica genome associated with tRNA(leuX). J Bacteriol 187, 2469–2482.[CrossRef]
    [Google Scholar]
  3. Biswas, T., Aihara, H., Radman-Livaja, M., Filman, D., Landy, A. & Ellenberger, T. ( 2005; ). A structural basis for allosteric control of DNA recombination by lambda integrase. Nature 435, 1059–1066.[CrossRef]
    [Google Scholar]
  4. Boorstein, W. R. & Craig, E. A. ( 1989; ). Primer extension analysis of RNA. Methods Enzymol 180, 347–369.
    [Google Scholar]
  5. Briani, F., Zangrossi, S., Ghisotti, D. & Dehò, G. ( 1996; ). A Rho-dependent transcription termination site regulated by bacteriophage P4 RNA immunity factor. Virology 223, 57–67.[CrossRef]
    [Google Scholar]
  6. Calì, S., Spoldi, E., Piazzolla, D., Dodd, I. B., Forti, F., Dehò, G. & Ghisotti, D. ( 2004; ). Bacteriophage P4 Vis protein is needed for prophage excision. Virology 322, 82–92.[CrossRef]
    [Google Scholar]
  7. Cho, E. H., Gumport, R. I. & Gardner, J. F. ( 2002; ). Interactions between integrase and excisionase in the phage lambda excisive nucleoprotein complex. J Bacteriol 184, 5200–5203.[CrossRef]
    [Google Scholar]
  8. Davies, D. R., Mahnke Braam, L., Reznikoff, W. S. & Rayment, I. ( 1999; ). The three-dimensional structure of a Tn5 transposase-related protein determined to 2.9-Å resolution. J Biol Chem 274, 11904–11913.[CrossRef]
    [Google Scholar]
  9. Dehò, G., Ghisotti, D., Alano, P., Zangrossi, S., Borrello, M. G. & Sironi, G. ( 1984; ). Plasmid mode of propagation of the genetic element P4. J Mol Biol 178, 191–207.[CrossRef]
    [Google Scholar]
  10. Dehò, G., Zangrossi, S., Sabbattini, P., Sironi, G. & Ghisotti, D. ( 1992; ). Bacteriophage P4 immunity controlled by small RNAs via transcription termination. Mol Microbiol 6, 3415–3425.[CrossRef]
    [Google Scholar]
  11. de la Cruz, N. B., Weinreich, M. D., Wiegand, T. W., Krebs, M. P. & Reznikoff, W. S. ( 1993; ). Characterization of the Tn5 transposase and inhibitor proteins: a model for the inhibition of transposition. J Bacteriol 175, 6932–6938.
    [Google Scholar]
  12. de Moitoso, V. & Landy, A. ( 1991; ). A switch in the formation of alternative DNA loops modulates lambda site-specific recombination. Proc Natl Acad Sci U S A 88, 588–592.[CrossRef]
    [Google Scholar]
  13. Esposito, D. & Scocca, J. J. ( 1997; ). The integrase family of tyrosine recombinases: evolution of a conserved active site domain. Nucleic Acids Res 25, 3605–3614.[CrossRef]
    [Google Scholar]
  14. Frumerie, C., Sylwan, L., Ahlgren-Berg, A. & Haggård-Ljungquist, E. ( 2005; ). Cooperative interactions between bacteriophage P2 integrase and its accessory factors IHF and Cox. Virology 332, 284–294.[CrossRef]
    [Google Scholar]
  15. Ghisotti, D., Finkel, S., Halling, C., Dehò, G., Sironi, G. & Calendar, R. ( 1990; ). Nonessential region of bacteriophage P4: DNA sequence, transcription, gene products, and functions. J Virol 64, 24–36.
    [Google Scholar]
  16. Ghisotti, D., Chiaramonte, R., Forti, F., Zangrossi, S., Sironi, G. & Dehò, G. ( 1992; ). Genetic analysis of the immunity region of phage-plasmid P4. Mol Microbiol 6, 3405–3413.[CrossRef]
    [Google Scholar]
  17. Gonzalez de Valdivia, E. I. & Isaksson, L. A. ( 2004; ). A codon window in mRNA downstream of the initiation codon where NGG codons give strongly reduced gene expression in Escherichia coli. Nucleic Acids Res 32, 5198–5205.[CrossRef]
    [Google Scholar]
  18. Gonzalez de Valdivia, E. I. & Isaksson, L. A. ( 2005; ). Abortive translation caused by peptidyl-tRNA drop-off at NGG codons in the early coding region of mRNA. FEBS J 272, 5306–5316.[CrossRef]
    [Google Scholar]
  19. Grainge, I. & Jayaram, M. ( 1999; ). The integrase family of recombinase: organization and function of the active site. Mol Microbiol 33, 449–456.[CrossRef]
    [Google Scholar]
  20. Grant, S. G., Jessee, J., Bloom, F. R. & Hanahan, D. ( 1990; ). Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci U S A 87, 4645–4649.[CrossRef]
    [Google Scholar]
  21. Hanahan, D. ( 1983; ). Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166, 557–580.[CrossRef]
    [Google Scholar]
  22. Higgins, D. G., Thompson, J. D. & Gibson, T. J. ( 1996; ). Using clustal for multiple sequence alignments. Methods Enzymol 266, 383–402.
    [Google Scholar]
  23. Kita, K., Tsuda, J., Kato, T., Okamoto, K., Yanase, H. & Tanaka, M. ( 1999; ). Evidence of horizontal transfer of the EcoO109I restriction-modification gene to Escherichia coli chromosomal DNA. J Bacteriol 181, 6822–6827.
    [Google Scholar]
  24. Lessl, M., Balzer, D., Lurz, R., Waters, V. L., Guiney, D. G. & Lanka, E. ( 1992; ). Dissection of IncP conjugative plasmid transfer: definition of the transfer region Tra2 by mobilization of the Tra1 region in trans. J Bacteriol 174, 2493–2500.
    [Google Scholar]
  25. Miller, J. H. ( 1972; ). In Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  26. Nash, H. A. ( 1981; ). Integration and excision of bacteriophage lambda: the mechanism of conservation site specific recombination. Annu Rev Genet 15, 143–167.[CrossRef]
    [Google Scholar]
  27. Numrych, T. E., Gumport, R. I. & Gardner, J. F. ( 1991; ). A genetic analysis of Xis and FIS interactions with their binding sites in bacteriophage lambda. J Bacteriol 173, 5954–5963.
    [Google Scholar]
  28. Nunes-Düby, S. E., Kwon, H. J., Tirumalai, R. S., Ellenberger, T. & Landy, A. ( 1998; ). Similarities and differences among 105 members of the Int family of site-specific recombinases. Nucleic Acids Res 26, 391–406.[CrossRef]
    [Google Scholar]
  29. Patsey, R. L. & Bruist, M. F. ( 1995; ). Characterization of the interaction between the lambda intasome and attB. J Mol Biol 252, 47–58.[CrossRef]
    [Google Scholar]
  30. Pierson, L. S., III & Kahn, M. L. ( 1984; ). Cloning of the integration and attachment regions of bacteriophage P4. Mol Gen Genet 195, 44–51.[CrossRef]
    [Google Scholar]
  31. Pierson, L. S., III & Kahn, M. L. ( 1987; ). Integration of satellite bacteriophage P4 in Escherichia coli. DNA sequences of the phage and host regions involved in site-specific recombination. J Mol Biol 196, 487–496.[CrossRef]
    [Google Scholar]
  32. Polo, S., Sturniolo, T., Dehò, G. & Ghisotti, D. ( 1996; ). Identification of a phage-coded DNA-binding protein that regulates transcription from late promoters in bacteriophage P4. J Mol Biol 257, 745–755.[CrossRef]
    [Google Scholar]
  33. Radman-Livaja, M., Shaw, C., Azaro, M., Biswas, T., Ellenberger, T. & Landy, A. ( 2003; ). Arm sequences contribute to the architecture and catalytic function of a lambda integrase-Holliday junction complex. Mol Cell 11, 783–794.[CrossRef]
    [Google Scholar]
  34. Radman-Livaja, M., Biswas, T., Ellenberger, T., Landy, A. & Aihara, H. ( 2006; ). DNA arms do the legwork to ensure the directionality of lambda site-specific recombination. Curr Opin Struct Biol 16, 42–50.[CrossRef]
    [Google Scholar]
  35. Regonesi, M. E., Briani, F., Ghetta, A., Zangrossi, S., Ghisotti, D., Tortora, P. & Dehò, G. ( 2004; ). A mutation in polynucleotide phosphorylase from Escherichia coli impairing RNA binding and degradosome stability. Nucleic Acids Res 32, 1006–1017.[CrossRef]
    [Google Scholar]
  36. Reznikoff, W. S. ( 2003; ). Tn5 as a model for understanding DNA transposition. Mol Microb 47, 1199–1206.[CrossRef]
    [Google Scholar]
  37. Richet, E., Abcarian, P. & Nash, H. A. ( 1988; ). Synapsis of attachment sites during lambda integrative recombination involves capture of a naked DNA by a protein-DNA complex. Cell 52, 9–17.[CrossRef]
    [Google Scholar]
  38. Saha, S., Haggård-Ljungquist, E. & Nordstrom, K. ( 1990; ). Integration host factor is necessary for lysogenization of Escherichia coli by bacteriophage P2. Mol Microbiol 4, 3–11.[CrossRef]
    [Google Scholar]
  39. Sasaki, I. & Bertani, G. ( 1965; ). Growth abnormalities in Hfr derivatives of Escherichia coli strain C. J Gen Microbiol 40, 365–376.[CrossRef]
    [Google Scholar]
  40. Simons, R. W., Houman, F. & Kleckner, N. ( 1987; ). Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene 53, 85–96.[CrossRef]
    [Google Scholar]
  41. Six, E. W. & Klug, C. A. ( 1973; ). Bacteriophage P4: a satellite virus depending on a helper such as prophage P2. Virology 51, 327–344.[CrossRef]
    [Google Scholar]
  42. Steiniger-White, M., Rayment, I. & Reznikoff, W. S. ( 2004; ). Structure/function insights into Tn5 transposition. Curr Opin Struct Biol 14, 50–57.[CrossRef]
    [Google Scholar]
  43. Swalla, B. M., Cho, E. H., Gumport, R. I. & Gardner, J. F. ( 2003; ). The molecular basis of co-operative DNA binding between lambda integrase and excisionase. Mol Microbiol 50, 89–99.[CrossRef]
    [Google Scholar]
  44. Wu, Z., Gumport, R. I. & Gardner, J. F. ( 1998; ). Defining the structural and functional roles of the carboxyl region of the bacteriophage lambda excisionase (Xis) protein. J Mol Biol 281, 651–661.[CrossRef]
    [Google Scholar]
  45. Yanisch-Perron, C., Vieira, J. & Messing, J. ( 1985; ). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 103–119.[CrossRef]
    [Google Scholar]
  46. Yu, A., Bertani, L. E. & Haggård-Ljungquist, E. ( 1989; ). Control of prophage integration and excision in bacteriophage P2: nucleotide sequences of the int gene and att sites. Gene 80, 1–11.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81875-0
Loading
/content/journal/jgv/10.1099/vir.0.81875-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error