Skip to content
1887

Abstract

Phage P4 gene encodes the integrase responsible for phage integration into and excision from the chromosome. Here, the data showing that P4 expression is regulated in a complex manner at different levels are presented. First of all, the P promoter is regulated negatively by both Int and Vis, the P4 excisionase. The N-terminal portion of Int appears to be sufficient for such a negative autoregulation, suggesting that the Int N terminus is implicated in DNA binding. Second, full-length transcripts covering the entire gene could be detected only upon P4 infection, whereas in P4 lysogens only short 5′-end covering transcripts were detectable. On the other hand, transcripts covering the 5′-end of were also very abundant upon infection. It thus appears that premature transcription termination and/or mRNA degradation play a role in Int-negative regulation both on the basal prophage transcription and upon infection. Finally, comparison between P transcriptional and translational fusions suggests that Vis regulates Int expression post-transcriptionally. The findings that Vis is also an RNA-binding protein and that Int may be translated from two different start codons have implications on possible regulation models of Int expression.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81875-0
2006-08-01
2025-01-24
Loading full text...

Full text loading...

References

  1. Argos P., Landy A., Abremski K. & 9 other authors 1986; The integrase family of site-specific recombinases: regional similarities and global diversity. EMBO J 5:433–440
    [Google Scholar]
  2. Bishop A. L., Baker S., Jenks S. & 8 other authors 2005; Analysis of the hypervariable region of the Salmonella enterica genome associated with tRNA(leuX). J Bacteriol 187:2469–2482 [CrossRef]
    [Google Scholar]
  3. Biswas T., Aihara H., Radman-Livaja M., Filman D., Landy A., Ellenberger T. 2005; A structural basis for allosteric control of DNA recombination by lambda integrase. Nature 435:1059–1066 [CrossRef]
    [Google Scholar]
  4. Boorstein W. R., Craig E. A. 1989; Primer extension analysis of RNA. Methods Enzymol 180:347–369
    [Google Scholar]
  5. Briani F., Zangrossi S., Ghisotti D., Dehò G. 1996; A Rho-dependent transcription termination site regulated by bacteriophage P4 RNA immunity factor. Virology 223:57–67 [CrossRef]
    [Google Scholar]
  6. Calì S., Spoldi E., Piazzolla D., Dodd I. B., Forti F., Dehò G., Ghisotti D. 2004; Bacteriophage P4 Vis protein is needed for prophage excision. Virology 322:82–92 [CrossRef]
    [Google Scholar]
  7. Cho E. H., Gumport R. I., Gardner J. F. 2002; Interactions between integrase and excisionase in the phage lambda excisive nucleoprotein complex. J Bacteriol 184:5200–5203 [CrossRef]
    [Google Scholar]
  8. Davies D. R., Mahnke Braam L., Reznikoff W. S., Rayment I. 1999; The three-dimensional structure of a Tn 5 transposase-related protein determined to 2.9-Å resolution. J Biol Chem 274:11904–11913 [CrossRef]
    [Google Scholar]
  9. Dehò G., Ghisotti D., Alano P., Zangrossi S., Borrello M. G., Sironi G. 1984; Plasmid mode of propagation of the genetic element P4. J Mol Biol 178:191–207 [CrossRef]
    [Google Scholar]
  10. Dehò G., Zangrossi S., Sabbattini P., Sironi G., Ghisotti D. 1992; Bacteriophage P4 immunity controlled by small RNAs via transcription termination. Mol Microbiol 6:3415–3425 [CrossRef]
    [Google Scholar]
  11. de la Cruz N. B., Weinreich M. D., Wiegand T. W., Krebs M. P., Reznikoff W. S. 1993; Characterization of the Tn 5 transposase and inhibitor proteins: a model for the inhibition of transposition. J Bacteriol 175:6932–6938
    [Google Scholar]
  12. de Moitoso V., Landy A. 1991; A switch in the formation of alternative DNA loops modulates lambda site-specific recombination. Proc Natl Acad Sci U S A 88:588–592 [CrossRef]
    [Google Scholar]
  13. Esposito D., Scocca J. J. 1997; The integrase family of tyrosine recombinases: evolution of a conserved active site domain. Nucleic Acids Res 25:3605–3614 [CrossRef]
    [Google Scholar]
  14. Frumerie C., Sylwan L., Ahlgren-Berg A., Haggård-Ljungquist E. 2005; Cooperative interactions between bacteriophage P2 integrase and its accessory factors IHF and Cox. Virology 332:284–294 [CrossRef]
    [Google Scholar]
  15. Ghisotti D., Finkel S., Halling C., Dehò G., Sironi G., Calendar R. 1990; Nonessential region of bacteriophage P4: DNA sequence, transcription, gene products, and functions. J Virol 64:24–36
    [Google Scholar]
  16. Ghisotti D., Chiaramonte R., Forti F., Zangrossi S., Sironi G., Dehò G. 1992; Genetic analysis of the immunity region of phage-plasmid P4. Mol Microbiol 6:3405–3413 [CrossRef]
    [Google Scholar]
  17. Gonzalez de Valdivia E. I., Isaksson L. A. 2004; A codon window in mRNA downstream of the initiation codon where NGG codons give strongly reduced gene expression in Escherichia coli . Nucleic Acids Res 32:5198–5205 [CrossRef]
    [Google Scholar]
  18. Gonzalez de Valdivia E. I., Isaksson L. A. 2005; Abortive translation caused by peptidyl-tRNA drop-off at NGG codons in the early coding region of mRNA. FEBS J 272:5306–5316 [CrossRef]
    [Google Scholar]
  19. Grainge I., Jayaram M. 1999; The integrase family of recombinase: organization and function of the active site. Mol Microbiol 33:449–456 [CrossRef]
    [Google Scholar]
  20. Grant S. G., Jessee J., Bloom F. R., Hanahan D. 1990; Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci U S A 87:4645–4649 [CrossRef]
    [Google Scholar]
  21. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580 [CrossRef]
    [Google Scholar]
  22. Higgins D. G., Thompson J. D., Gibson T. J. 1996; Using clustal for multiple sequence alignments. Methods Enzymol 266:383–402
    [Google Scholar]
  23. Kita K., Tsuda J., Kato T., Okamoto K., Yanase H., Tanaka M. 1999; Evidence of horizontal transfer of the EcoO109I restriction-modification gene to Escherichia coli chromosomal DNA. J Bacteriol 181:6822–6827
    [Google Scholar]
  24. Lessl M., Balzer D., Lurz R., Waters V. L., Guiney D. G., Lanka E. 1992; Dissection of IncP conjugative plasmid transfer: definition of the transfer region Tra2 by mobilization of the Tra1 region in trans. J Bacteriol 174:2493–2500
    [Google Scholar]
  25. Miller J. H. 1972 In Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Nash H. A. 1981; Integration and excision of bacteriophage lambda: the mechanism of conservation site specific recombination. Annu Rev Genet 15:143–167 [CrossRef]
    [Google Scholar]
  27. Numrych T. E., Gumport R. I., Gardner J. F. 1991; A genetic analysis of Xis and FIS interactions with their binding sites in bacteriophage lambda. J Bacteriol 173:5954–5963
    [Google Scholar]
  28. Nunes-Düby S. E., Kwon H. J., Tirumalai R. S., Ellenberger T., Landy A. 1998; Similarities and differences among 105 members of the Int family of site-specific recombinases. Nucleic Acids Res 26:391–406 [CrossRef]
    [Google Scholar]
  29. Patsey R. L., Bruist M. F. 1995; Characterization of the interaction between the lambda intasome and attB . J Mol Biol 252:47–58 [CrossRef]
    [Google Scholar]
  30. Pierson L. S. III, Kahn M. L. 1984; Cloning of the integration and attachment regions of bacteriophage P4. Mol Gen Genet 195:44–51 [CrossRef]
    [Google Scholar]
  31. Pierson L. S. III, Kahn M. L. 1987; Integration of satellite bacteriophage P4 in Escherichia coli . DNA sequences of the phage and host regions involved in site-specific recombination. J Mol Biol 196:487–496 [CrossRef]
    [Google Scholar]
  32. Polo S., Sturniolo T., Dehò G., Ghisotti D. 1996; Identification of a phage-coded DNA-binding protein that regulates transcription from late promoters in bacteriophage P4. J Mol Biol 257:745–755 [CrossRef]
    [Google Scholar]
  33. Radman-Livaja M., Shaw C., Azaro M., Biswas T., Ellenberger T., Landy A. 2003; Arm sequences contribute to the architecture and catalytic function of a lambda integrase-Holliday junction complex. Mol Cell 11:783–794 [CrossRef]
    [Google Scholar]
  34. Radman-Livaja M., Biswas T., Ellenberger T., Landy A., Aihara H. 2006; DNA arms do the legwork to ensure the directionality of lambda site-specific recombination. Curr Opin Struct Biol 16:42–50 [CrossRef]
    [Google Scholar]
  35. Regonesi M. E., Briani F., Ghetta A., Zangrossi S., Ghisotti D., Tortora P., Dehò G. 2004; A mutation in polynucleotide phosphorylase from Escherichia coli impairing RNA binding and degradosome stability. Nucleic Acids Res 32:1006–1017 [CrossRef]
    [Google Scholar]
  36. Reznikoff W. S. 2003; Tn 5 as a model for understanding DNA transposition. Mol Microb 47:1199–1206 [CrossRef]
    [Google Scholar]
  37. Richet E., Abcarian P., Nash H. A. 1988; Synapsis of attachment sites during lambda integrative recombination involves capture of a naked DNA by a protein-DNA complex. Cell 52:9–17 [CrossRef]
    [Google Scholar]
  38. Saha S., Haggård-Ljungquist E., Nordstrom K. 1990; Integration host factor is necessary for lysogenization of Escherichia coli by bacteriophage P2. Mol Microbiol 4:3–11 [CrossRef]
    [Google Scholar]
  39. Sasaki I., Bertani G. 1965; Growth abnormalities in Hfr derivatives of Escherichia coli strain C. J Gen Microbiol 40:365–376 [CrossRef]
    [Google Scholar]
  40. Simons R. W., Houman F., Kleckner N. 1987; Improved single and multicopy lac -based cloning vectors for protein and operon fusions. Gene 53:85–96 [CrossRef]
    [Google Scholar]
  41. Six E. W., Klug C. A. 1973; Bacteriophage P4: a satellite virus depending on a helper such as prophage P2. Virology 51:327–344 [CrossRef]
    [Google Scholar]
  42. Steiniger-White M., Rayment I., Reznikoff W. S. 2004; Structure/function insights into Tn 5 transposition. Curr Opin Struct Biol 14:50–57 [CrossRef]
    [Google Scholar]
  43. Swalla B. M., Cho E. H., Gumport R. I., Gardner J. F. 2003; The molecular basis of co-operative DNA binding between lambda integrase and excisionase. Mol Microbiol 50:89–99 [CrossRef]
    [Google Scholar]
  44. Wu Z., Gumport R. I., Gardner J. F. 1998; Defining the structural and functional roles of the carboxyl region of the bacteriophage lambda excisionase (Xis) protein. J Mol Biol 281:651–661 [CrossRef]
    [Google Scholar]
  45. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119 [CrossRef]
    [Google Scholar]
  46. Yu A., Bertani L. E., Haggård-Ljungquist E. 1989; Control of prophage integration and excision in bacteriophage P2: nucleotide sequences of the int gene and att sites. Gene 80:1–11 [CrossRef]
    [Google Scholar]
/content/journal/jgv/10.1099/vir.0.81875-0
Loading
/content/journal/jgv/10.1099/vir.0.81875-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error