1887

Abstract

, a member of the family of positive-strand RNA viruses, has seven non-structural proteins: NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5. Except for enzymic activities contained within NS3 and NS5, the roles of the other proteins in virus replication and pathogenesis are not well defined. In this study, a physical interaction between NS4B and the helicase domain of NS3 was identified by using a yeast two-hybrid assay. This interaction was further confirmed by biochemical pull-down and immunoprecipitation assays, both with purified proteins and with dengue virus-infected cell lysates. NS4B co-localized with NS3 in the perinuclear region of infected human cells. Furthermore, NS4B dissociated NS3 from single-stranded RNA and consequently enhanced the helicase activity of NS3 in an unwinding assay. These results suggest that NS4B modulates dengue virus replication via its interaction with NS3.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81844-0
2006-09-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/9/2605.html?itemId=/content/journal/jgv/10.1099/vir.0.81844-0&mimeType=html&fmt=ahah

References

  1. Ackermann, M. & Padmanabhan, R. ( 2001; ). De novo synthesis of RNA by the dengue virus RNA-dependent RNA polymerase exhibits temperature dependence at the initiation but not elongation phase. J Biol Chem 276, 39926–39937.[CrossRef]
    [Google Scholar]
  2. Arias, C. F., Preugschat, F. & Strauss, J. H. ( 1993; ). Dengue 2 virus NS2B and NS3 form a stable complex that can cleave NS3 within the helicase domain. Virology 193, 888–899.[CrossRef]
    [Google Scholar]
  3. Balint, A., Baule, C., Kecskemeti, S., Kiss, I. & Belak, S. ( 2005; ). Cytopathogenicity markers in the genome of Hungarian cytopathic isolates of bovine viral diarrhoea virus. Acta Vet Hung 53, 125–136.[CrossRef]
    [Google Scholar]
  4. Benarroch, D., Selisko, B., Locatelli, G. A., Maga, G., Romette, J.-L. & Canard, B. ( 2004; ). The RNA helicase, nucleotide 5′-triphosphatase, and RNA 5′-triphosphatase activities of Dengue virus protein NS3 are Mg2+-dependent and require a functional Walker B motif in the helicase catalytic core. Virology 328, 208–218.[CrossRef]
    [Google Scholar]
  5. Brooks, A. J., Johansson, M., John, A. V., Xu, Y., Jans, D. A. & Vasudevan, S. G. ( 2002; ). The interdomain region of dengue NS5 protein that binds to the viral helicase NS3 contains independently functional importin β1 and importin α/β-recognized nuclear localization signals. J Biol Chem 277, 36399–36407.[CrossRef]
    [Google Scholar]
  6. Chambers, T. J. & Rice, C. M. ( 1987; ). Molecular biology of the flaviviruses. Microbiol Sci 4, 219–223.
    [Google Scholar]
  7. Chu, P. W. G. & Westaway, E. G. ( 1987; ). Characterization of Kunjin virus RNA-dependent RNA polymerase: reinitiation of synthesis in vitro. Virology 157, 330–337.[CrossRef]
    [Google Scholar]
  8. Chu, P. W. G. & Westaway, E. G. ( 1992; ). Molecular and ultrastructural analysis of heavy membrane fractions associated with the replication of Kunjin virus RNA. Arch Virol 125, 177–191.[CrossRef]
    [Google Scholar]
  9. Clum, S., Ebner, K. E. & Padmanabhan, R. ( 1997; ). Cotranslational membrane insertion of the serine proteinase precursor NS2B-NS3(Pro) of dengue virus type 2 is required for efficient in vitro processing and is mediated through the hydrophobic regions of NS2B. J Biol Chem 272, 30715–30723.[CrossRef]
    [Google Scholar]
  10. Dimitrova, M., Imbert, I., Kieny, M. P. & Schuster, C. ( 2003; ). Protein-protein interactions between hepatitis C virus nonstructural proteins. J Virol 77, 5401–5414.[CrossRef]
    [Google Scholar]
  11. Egger, D., Wölk, B., Gosert, R., Bianchi, L., Blum, H. E., Moradpour, D. & Bienz, K. ( 2002; ). Expression of hepatitis C virus proteins induces distinct membrane alterations including a candidate viral replication complex. J Virol 76, 5974–5984.[CrossRef]
    [Google Scholar]
  12. Egloff, M.-P., Benarroch, D., Selisko, B., Romette, J.-L. & Canard, B. ( 2002; ). An RNA cap (nucleoside-2′-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. EMBO J 21, 2757–2768.[CrossRef]
    [Google Scholar]
  13. Falgout, B., Pethel, M., Zhang, Y.-M. & Lai, C.-J. ( 1991; ). Both nonstructural proteins NS2B and NS3 are required for the proteolytic processing of dengue virus nonstructural proteins. J Virol 65, 2467–2475.
    [Google Scholar]
  14. Falgout, B., Miller, R. H. & Lai, C.-J. ( 1993; ). Deletion analysis of dengue virus type 4 nonstructural protein NS2B: identification of a domain required for NS2B-NS3 protease activity. J Virol 67, 2034–2042.
    [Google Scholar]
  15. Fields, S. & Song, O.-K. ( 1989; ). A novel genetic system to detect protein–protein interactions. Nature 340, 245–246.[CrossRef]
    [Google Scholar]
  16. Flamand, M., Megret, F., Mathieu, M., Lepault, J., Rey, F. A. & Deubel, V. ( 1999; ). Dengue virus type 1 nonstructural glycoprotein NS1 is secreted from mammalian cells as a soluble hexamer in a glycosylation-dependent fashion. J Virol 73, 6104–6110.
    [Google Scholar]
  17. Gallinari, P., Paolini, C., Brennan, D., Nardi, C., Steinkühler, C. & De Francesco, R. ( 1999; ). Modulation of hepatitis C virus NS3 protease and helicase activities through the interaction with NS4A. Biochemistry 38, 5620–5632.[CrossRef]
    [Google Scholar]
  18. Grassmann, C. W., Isken, O., Tautz, N. & Behrens, S.-E. ( 2001; ). Genetic analysis of the pestivirus nonstructural coding region: defects in the NS5A unit can be complemented in trans. J Virol 75, 7791–7802.[CrossRef]
    [Google Scholar]
  19. Gretton, S. N., Taylor, A. I. & McLauchlan, J. ( 2005; ). Mobility of the hepatitis C virus NS4B protein on the endoplasmic reticulum membrane and membrane-associated foci. J Gen Virol 86, 1415–1421.[CrossRef]
    [Google Scholar]
  20. Gubler, D. J. ( 1998; ). Dengue and dengue hemorrhagic fever. Clin Microbiol Rev 11, 480–496.
    [Google Scholar]
  21. Gubler, D. J. ( 2002; ). Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol 10, 100–103.[CrossRef]
    [Google Scholar]
  22. Hanley, K. A., Manlucu, L. R., Gilmore, L. E., Blaney, J. E., Jr, Hanson, C. T., Murphy, B. R. & Whitehead, S. S. ( 2003; ). A trade-off in replication in mosquito versus mammalian systems conferred by a point mutation in the NS4B protein of dengue virus type 4. Virology 312, 222–232.[CrossRef]
    [Google Scholar]
  23. Howe, A. Y., Chase, R., Taremi, S. S., Risano, C., Beyer, B., Malcolm, B. & Lau, J. Y. ( 1999; ). A novel recombinant single-chain hepatitis C virus NS3-NS4A protein with improved helicase activity. Protein Sci 8, 1332–1341.[CrossRef]
    [Google Scholar]
  24. Hügle, T., Fehrmann, F., Bieck, E., Kohara, M., Kräusslich, H.-G., Rice, C. M., Blum, H. E. & Moradpour, D. ( 2001; ). The hepatitis C virus nonstructural protein 4B is an integral endoplasmic reticulum membrane protein. Virology 284, 70–81.[CrossRef]
    [Google Scholar]
  25. Johansson, M., Brooks, A. J., Jans, D. A. & Vasudevan, S. G. ( 2001; ). A small region of the dengue virus-encoded RNA-dependent RNA polymerase, NS5, confers interaction with both the nuclear transport receptor importin-β and the viral helicase, NS3. J Gen Virol 82, 735–745.
    [Google Scholar]
  26. Kapoor, M., Zhang, L., Ramachandra, M., Kusukawa, J., Ebner, K. E. & Padmanabhan, R. ( 1995; ). Association between NS3 and NS5 proteins of dengue virus type 2 in the putative RNA replicase is linked to differential phosphorylation of NS5. J Biol Chem 270, 19100–19106.[CrossRef]
    [Google Scholar]
  27. Khromykh, A. A., Sedlak, P. L. & Westaway, E. G. ( 2000; ). cis- and trans-acting elements in flavivirus RNA replication. J Virol 74, 3253–3263.[CrossRef]
    [Google Scholar]
  28. Kuhn, R. J., Zhang, W., Rossmann, M. G. & 9 other authors ( 2002; ). Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108, 717–725.[CrossRef]
    [Google Scholar]
  29. Lanzetta, P. A., Alvarez, L. J., Reinach, P. S. & Candia, O. A. ( 1979; ). An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem 100, 95–97.[CrossRef]
    [Google Scholar]
  30. Li, Y. & McNally, J. ( 2001; ). Characterization of RNA synthesis and translation of bovine viral diarrhea virus (BVDV). Virus Genes 23, 149–155.[CrossRef]
    [Google Scholar]
  31. Li, H., Clum, S., You, S., Ebner, K. E. & Padmanabhan, R. ( 1999; ). The serine protease and RNA-stimulated nucleoside triphosphatase and RNA helicase functional domains of dengue virus type 2 NS3 converge within a region of 20 amino acids. J Virol 73, 3108–3116.
    [Google Scholar]
  32. Li, J., Lim, S. P., Beer, D. & 9 other authors ( 2005; ). Functional profiling of recombinant NS3 proteases from all four serotypes of dengue virus using tetrapeptide and octapeptide substrate libraries. J Biol Chem 280, 28766–28774.[CrossRef]
    [Google Scholar]
  33. Lindenbach, B. D. & Rice, C. M. ( 2003; ). Molecular biology of flaviviruses. Adv Virus Res 59, 23–61.
    [Google Scholar]
  34. Lundin, M., Monné, M., Widell, A., von Heijne, G. & Persson, M. A. A. ( 2003; ). Topology of the membrane-associated hepatitis C virus protein NS4B. J Virol 77, 5428–5438.[CrossRef]
    [Google Scholar]
  35. Miller, S., Sparacio, S. & Bartenschlager, R. ( 2006; ). Subcellular localization and membrane topology of the dengue virus type 2 non-structural protein 4B. J Biol Chem 281, 8854–8863.[CrossRef]
    [Google Scholar]
  36. Morgenstern, K. A., Landro, J. A., Hsiao, K., Lin, C., Gu, Y., Su, M. S.-S. & Thomson, J. A. ( 1997; ). Polynucleotide modulation of the protease, nucleoside triphosphatase, and helicase activities of a hepatitis C virus NS3-NS4A complex isolated from transfected COS cells. J Virol 71, 3767–3775.
    [Google Scholar]
  37. Muñoz-Jordán, J. L., Sánchez-Burgos, G. G., Laurent-Rolle, M. & García-Sastre, A. ( 2003; ). Inhibition of interferon signaling by dengue virus. Proc Natl Acad Sci U S A 100, 14333–14338.[CrossRef]
    [Google Scholar]
  38. Muñoz-Jordán, J. L., Laurent-Rolle, M., Ashour, J., Martínez-Sobrido, L., Ashok, M., Lipkin, W. I. & García-Sastre, A. ( 2005; ). Inhibition of alpha/beta interferon signaling by the NS4B protein of flaviviruses. J Virol 79, 8004–8013.[CrossRef]
    [Google Scholar]
  39. Pang, P. S., Jankowsky, E., Planet, P. J. & Pyle, A. M. ( 2002; ). The hepatitis C viral NS3 protein is a processive DNA helicase with cofactor enhanced RNA unwinding. EMBO J 21, 1168–1176.[CrossRef]
    [Google Scholar]
  40. Piccininni, S., Varaklioti, A., Nardelli, M., Dave, B., Raney, K. D. & McCarthy, J. E. G. ( 2002; ). Modulation of the hepatitis C virus RNA-dependent RNA polymerase activity by the non-structural (NS) 3 helicase and the NS4B membrane protein. J Biol Chem 277, 45670–45679.[CrossRef]
    [Google Scholar]
  41. Qu, L., McMullan, L. K. & Rice, C. M. ( 2001; ). Isolation and characterization of noncytopathic pestivirus mutants reveals a role for nonstructural protein NS4B in viral cytopathogenicity. J Virol 75, 10651–10662.[CrossRef]
    [Google Scholar]
  42. Rocak, S. & Linder, P. ( 2004; ). DEAD-box proteins: the driving forces behind RNA metabolism. Nat Rev Mol Cell Biol 5, 232–241.[CrossRef]
    [Google Scholar]
  43. Silverman, E., Edwalds-Gilbert, G. & Lin, R.-J. ( 2003; ). DExD/H-box proteins and their partners: helping RNA helicases unwind. Gene 312, 1–16.[CrossRef]
    [Google Scholar]
  44. Tan, B.-H., Fu, J., Sugrue, R. J., Yap, E.-H., Chan, Y.-C. & Tan, Y. H. ( 1996; ). Recombinant dengue type 1 virus NS5 protein expressed in Escherichia coli exhibits RNA-dependent RNA polymerase activity. Virology 216, 317–325.[CrossRef]
    [Google Scholar]
  45. Westaway, E. G., Khromykh, A. A., Kenney, M. T., Mackenzie, J. M. & Jones, M. K. ( 1997; ). Proteins C and NS4B of the flavivirus Kunjin translocate independently into the nucleus. Virology 234, 31–41.[CrossRef]
    [Google Scholar]
  46. Westaway, E. G., Mackenzie, J. M. & Khromykh, A. A. ( 2003; ). Kunjin RNA replication and applications of Kunjin replicons. Adv Virus Res 59, 99–140.
    [Google Scholar]
  47. Winkler, G., Randolph, V. B., Cleaves, G. R., Ryan, T. E. & Stollar, V. ( 1988; ). Evidence that the mature form of the flavivirus nonstructural protein NS1 is a dimer. Virology 162, 187–196.[CrossRef]
    [Google Scholar]
  48. Wu, J., Bera, A. K., Kuhn, R. J. & Smith, J. L. ( 2005; ). Structure of the flavivirus helicase: implications for catalytic activity, protein interactions, and proteolytic processing. J Virol 79, 10268–10277.[CrossRef]
    [Google Scholar]
  49. Xu, T., Sampath, A., Chao, A., Wen, D., Nanao, M., Chene, P., Vasudevan, S. G. & Lescar, J. ( 2005; ). Structure of the dengue virus helicase/nucleoside triphosphatase catalytic domain at a resolution of 2.4 Å. J Virol 79, 10278–10288.[CrossRef]
    [Google Scholar]
  50. Yon, C., Teramoto, T., Mueller, N., Phelan, J., Ganesh, V. K., Murthy, K. H. M. & Padmanabhan, R. ( 2005; ). Modulation of the nucleoside triphosphatase/RNA helicase and 5′-RNA triphosphatase activities of dengue virus type 2 nonstructural protein 3 (NS3) by interaction with NS5, the RNA-dependent RNA polymerase. J Biol Chem 280, 27412–27419.[CrossRef]
    [Google Scholar]
  51. Zhang, L., Mohan, P. M. & Padmanabhan, R. ( 1992; ). Processing and localization of dengue virus type 2 polyprotein precursor NS3-NS4A-NS4B-NS5. J Virol 66, 7549–7554.
    [Google Scholar]
  52. Zhang, Y., Corver, J., Chipman, P. R. & 7 other authors ( 2003; ). Structures of immature flavivirus particles. EMBO J 22, 2604–2613.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81844-0
Loading
/content/journal/jgv/10.1099/vir.0.81844-0
Loading

Data & Media loading...

Supplements

vol. , part 9, pp. 2605 – 2614

Plasmid constructs used in this report

Pull-downs with c-myc-tagged NS4B and NS4BM

Western blotting with anti-NS3 and anti-NS4B antibodies

[ Single PDF file] (229 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error