Selective constraint and genetic differentiation in geographically distant barley yellow dwarf virus populations Free

Abstract

Numerous studies have documented molecular variability in plant virus populations, but few have assessed the relative contribution of natural selection and genetic drift in generating the observed pattern of diversity. To this end, gene function, environment and phylogenetic history were examined to observe the effect on genetic diversity and population structure of the PAV and PAS species of (family ). Three functional classes of gene were analysed: transcription-related (RdRp), structural (CP) and movement-related (MP). The results indicate that there were no inherent differences, in terms of total diversity or diversity at synonymous or non-synonymous nucleotide sites, between functional classes of genes or populations. Rather, selective constraints on a gene may be more or less relaxed depending on its function and the phylogenetic history of the population sampled. The CP of the PAS species, but not the PAV species, was differentiated genetically between regions. This is probably due to genetic drift, as there was no evidence that any gene deviated from a neutral model of evolution or is under positive selection. In general, the MP was under considerably less functional constraint than structural or replication-related proteins and four positively selected codon sites were identified. Mutations at these sites differentiate species and geographical subpopulations, so presumably they have aided the virus in adaptation to its host environment and contributed to intra- and interspecies diversification.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81834-0
2006-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/10/3067.html?itemId=/content/journal/jgv/10.1099/vir.0.81834-0&mimeType=html&fmt=ahah

References

  1. Alicai T., Fenby N. S., Gibson R. W., Adipala E., Vetten H. J., Foster G. D., Seal S. E. 1999; Occurrence of two serotypes of sweet potato chlorotic stunt virus in East Africa and their associated differences in coat protein and HSP70 homologue gene sequences. Plant Pathol 48:718–726 [CrossRef]
    [Google Scholar]
  2. Anderson E. J., Qiu S. G., Schoelz J. E. 1991; Genetic analysis of determinants of disease severity and virus concentration in cauliflower mosaic virus. Virology 181:647–655 [CrossRef]
    [Google Scholar]
  3. Bencharki B., Mutterer J., El Yamani M., Ziegler-Graff V., Zaoui D., Jonard G. 1999; Severity of infection of Moroccan barley yellow dwarf virus PAV isolates correlates with variability in their coat protein sequences. Ann Appl Biol 134:89–99 [CrossRef]
    [Google Scholar]
  4. Bisnieks M., Kvarnheden A., Sigvald R., Valkonen J. P. T. 2004; Molecular diversity of the coat protein-encoding region of Barley yellow dwarf virus-PAV and Barley yellow dwarf virus-MAV from Latvia and Sweden. Arch Virol 149:843–853 [CrossRef]
    [Google Scholar]
  5. Chay C. A., Smith D. M., Vaughan R., Gray S. M. 1996a; Diversity among isolates within the PAV serotype of barley yellow dwarf virus. Phytopathology 86:370–377 [CrossRef]
    [Google Scholar]
  6. Chay C. A., Gunasinge U. B., Dinesh-Kumar S. P., Miller W. A., Gray S. M. 1996b; Aphid transmission and systemic plant infection determinants of barley yellow dwarf luteovirus-PAV are contained in the coat protein readthrough domain and 17-kDa protein, respectively. Virology 219:57–65 [CrossRef]
    [Google Scholar]
  7. Choi I.-R., Hall J. S., Henry M., Zhang L., Hein G. L., French R., Stenger D. C. 2001; Contributions of genetic drift and negative selection on the evolution of three strains of wheat streak mosaic tritimovirus. Arch Virol 146:619–628 [CrossRef]
    [Google Scholar]
  8. Dinesh-Kumar S. P., Miller W. A. 1993; Control of start codon choice on a plant viral RNA encoding overlapping genes. Plant Cell 5:679–692 [CrossRef]
    [Google Scholar]
  9. Filichkin S. A., Lister R. M., McGrath P. F., Young M. J. 1994; In vivo expression and mutational analysis of the barley yellow dwarf virus readthrough gene. Virology 205:290–299 [CrossRef]
    [Google Scholar]
  10. Fu Y.-X., Li W.-H. 1993; Statistical tests of neutrality of mutations. Genetics 133:693–709
    [Google Scholar]
  11. García-Arenal F., Fraile A., Malpica J. M. 2001; Variability and genetic structure of plant virus populations. Annu Rev Phytopathol 39:157–186 [CrossRef]
    [Google Scholar]
  12. Gildow F. E. 1987; Virus-membrane interactions involved in circulative transmission of luteoviruses by aphids. Curr Top Vect Res 4:93–120
    [Google Scholar]
  13. Gildow F. E. 1993; Evidence for receptor-mediated endocytosis regulating luteovirus acquisition by aphids. Phytopathology 83:270–277 [CrossRef]
    [Google Scholar]
  14. Guyader S., Ducray D. G. 2002; Sequence analysis of Potato leafroll virus isolates reveals genetic stability, major evolutionary events and differential selection pressure between overlapping reading frame products. J Gen Virol 83:1799–1807
    [Google Scholar]
  15. Hudson R. R., Boos D. D., Kaplan N. L. 1992; A statistical test for detecting geographic subdivision. Mol Biol Evol 9:138–151
    [Google Scholar]
  16. Koev G., Liu S., Beckett R., Miller W. A. 2002; The 3′-terminal structure required for replication of barley yellow dwarf virus RNA contains an embedded 3′ end. Virology 292:114–126 [CrossRef]
    [Google Scholar]
  17. Li W.-H. 1993; Unbiased estimation of the rates of synonymous and nonsynonymous substitution. J Mol Evol 36:96–99 [CrossRef]
    [Google Scholar]
  18. Lister R. M., Ranieri R. 1995; Distribution and economic importance of barley yellow dwarf. In Barley Yellow Dwarf: 40 Years of Progress pp  29–53 Edited by D'Arcy C. J., Burnett P. A. St Paul, MN: American Phytopathological Society;
    [Google Scholar]
  19. Lucio-Zavaleta E., Smith D. M., Gray S. M. 2001; Variation in transmission efficiency among Barley yellow dwarf virus -RMV isolates and clones of the normally inefficient aphid vector, Rhopalosiphum padi . Phytopathology 91:792–796 [CrossRef]
    [Google Scholar]
  20. Malmstrom C. M., Hughes C. C., Newton L. A., Stoner C. J. 2005a; Virus infection in remnant native bunchgrasses from invaded California grasslands. New Phytol 168:217–230 [CrossRef]
    [Google Scholar]
  21. Malmstrom C. M., McCullough A. J., Johnson H. A., Newton L. A., Borer E. T. 2005b; Invasive annual grasses indirectly increase virus incidence in California native perennial bunchgrasses. Oecologia 145:153–164 [CrossRef]
    [Google Scholar]
  22. Mastari J., Lapierre H., Dessens J. T. 1998; Asymmetrical distribution of barley yellow dwarf virus PAV variants between host plant species. Phytopathology 88:818–821 [CrossRef]
    [Google Scholar]
  23. Mayo M. A. 2002; ICTV at the Paris ICV: results of the plenary session and the binomial ballot. Arch Virol 147:2254–2260 [CrossRef]
    [Google Scholar]
  24. Miller W. A., Liu S., Beckett R. 2002; Barley yellow dwarf virus: Luteoviridae or Tombusviridae ?. Mol Plant Pathol 3:177–183 [CrossRef]
    [Google Scholar]
  25. Mishmar D., Ruiz-Pesini E., Golik P. & 10 other authors 2003; Natural selection shaped regional mtDNA variation in humans. Proc Natl Acad Sci U S A 100:171–176 [CrossRef]
    [Google Scholar]
  26. Mohan B. R., Dinesh-Kumar S. P., Miller W. A. 1995; Genes and cis -acting sequences involved in replication of barley yellow dwarf virus-PAV RNA. Virology 212:186–195 [CrossRef]
    [Google Scholar]
  27. Moury B. 2004; Differential selection of genes of cucumber mosaic virus subgroups. Mol Biol Evol 21:1602–1611 [CrossRef]
    [Google Scholar]
  28. Moury B., Cardin L., Onesto J.-P., Candresse T., Poupet A. 2001; Survey of Prunus necrotic ringspot virus in rose and its variability in rose and Prunus spp. Phytopathology 91:84–91 [CrossRef]
    [Google Scholar]
  29. Moury B., Morel C., Johansen E., Jacquemond M. 2002; Evidence for diversifying selection in Potato virus Y and in the coat protein of other potyviruses. J Gen Virol 83:2563–2573
    [Google Scholar]
  30. Nei M. 1987 Molecular Evolutionary Genetics New York: Columbia University Press;
    [Google Scholar]
  31. Nei M., Gojobori T. 1986; Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426
    [Google Scholar]
  32. Pinel A., N'Guessan P., Bousalem M., Fargette D. 2000; Molecular variability of geographically distinct isolates of rice yellow mottle virus in Africa. Arch Virol 145:1621–1638 [CrossRef]
    [Google Scholar]
  33. Power A. G., Gray S. M. 1995; Aphid transmission of barley yellow dwarf viruses: interactions between viruses, vectors, and host plants. In Barley Yellow Dwarf Virus: 40 Years of Progress pp  259–289 Edited by D'Arcy C. J., Burnett P. A. St Paul, MN: American Phytopathological Society;
    [Google Scholar]
  34. Price E. W., Carbone I. 2003 snap Workbench Department of Plant Pathology, North Carolina State University;
    [Google Scholar]
  35. Raybould A. F., Maskell L. C., Edwards M.-L., Cooper J. I., Gray A. J. 1999; The prevalence and spatial distribution of viruses in natural populations of Brassica oleracea . New Phytol 141:265–275 [CrossRef]
    [Google Scholar]
  36. Rochow W. F. 1969; Biological properties of four isolates of barley yellow dwarf virus. Phytopathology 59:1580–1589
    [Google Scholar]
  37. Rochow W. F., Muller I. 1971; A fifth variant of barley yellow dwarf virus in New York. Plant Dis 55:874–877
    [Google Scholar]
  38. Rozas J., Sánchez-DelBarrio J. C., Messeguer X., Rozas R. 2003; DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinfomatics 19:2496–2497 [CrossRef]
    [Google Scholar]
  39. Rubio L., Abou-Jawdah Y., Lin H.-X., Falk B. W. 2001; Geographically distant isolates of the crinivirus Cucurbit yellow stunting disorder virus show very low genetic diversity in the coat protein gene. J Gen Virol 82:929–933
    [Google Scholar]
  40. Sacristán S., Fraile A., Malpica J. M., García-Arenal F. 2005; An analysis of host adaptation and its relationship with virulence in Cucumber mosaic virus . Phytopathology 95:827–833 [CrossRef]
    [Google Scholar]
  41. Skotnicki M. L., Mackenzie A. M., Gibbs A. J. 1996; Genetic variation in populations of kennedya yellow mosaic tymovirus. Arch Virol 141:99–110 [CrossRef]
    [Google Scholar]
  42. Smith G. R., Borg Z., Lockhart B. E. L., Braithwaite K. S., Gibbs M. J. 2000; Sugarcane yellow leaf virus: a novel member of the luteoviridae that probably arose by inter-species recombination. J Gen Virol 81:1865–1869
    [Google Scholar]
  43. Swofford D. L. 2000 paup*: Phylogenetic analysis using parsimony (*and other methods), version 4.0b10 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  44. Tacke E., Prüfer D., Schmitz J., Rohde W. 1991; The potato leafroll luteovirus 17K protein is a single-stranded nucleic acid-binding protein. J Gen Virol 72:2035–2038 [CrossRef]
    [Google Scholar]
  45. Tacke E., Schmitz J., Prüfer D., Rohde W. 1993; Mutational analysis of the nucleic acid-binding 17 kDa phosphoprotein of potato leafroll luteovirus identifies an amphiphatic alpha-helix as the domain for protein/protein ineractions. Virology 197:274–282 [CrossRef]
    [Google Scholar]
  46. Tajima F. 1983; Evolutionary relationship of DNA sequences in finite populations. Genetics 105:437–460
    [Google Scholar]
  47. Tajima F. 1989; Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595
    [Google Scholar]
  48. Tomimura K., Gibbs A. J., Jenner C. E., Walsh J. A., Ohshima K. 2003; The phylogeny of Turnip mosaic virus ; comparisons of 38 genomic sequences reveal a Eurasian origin and a recent ‘emergence’ in east Asia. Mol Ecol 12:2099–2111 [CrossRef]
    [Google Scholar]
  49. Tsompana M., Abad J., Purugganan M., Moyer J. W. 2005; The molecular population genetics of the Tomato spotted wilt virus (TSWV) genome. Mol Ecol 14:53–66
    [Google Scholar]
  50. Wang X., Chang S., Jin Z., Li L., Zhou G. 2001; Nucleotide sequences of the coat protein and readthrough protein genes of the Chinese GAV isolate of barley yellow dwarf virus. Acta Virol 45:249–252
    [Google Scholar]
  51. Yang Z. 1997; paml: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556
    [Google Scholar]
  52. Yang Z., Nielsen R., Goldman N., Krabbe Pedersen A.-M. 2000; Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155:431–449
    [Google Scholar]
  53. Yang Z., Wong W. S. W., Nielsen R. 2005; Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol 22:1107–1118 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81834-0
Loading
/content/journal/jgv/10.1099/vir.0.81834-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed