1887

Abstract

Coxsackievirus B3 (CVB3) is a common factor in human myocarditis. The interplay between host factors and virus components is crucial for the fate of the infected cells. Despite that, host protein responses, which characterize CVB3-induced diseases, have not yet been determined in detail. To investigate the nature of modified protein patterns in infected human cells compared with uninfected cells, two-dimensional gel electrophoresis in combination with matrix-assisted laser desorption/ionization-mass spectrometry were used. The regulated proteins, e.g. nucleophosmin (nucleolar protein B23), lamin, the RNA-binding protein UNR and the p38 mitogen-activated protein kinase, were sorted according to their functional groups and interpreted in the context of the myocarditis process.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81819-0
2006-09-01
2021-03-09
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/9/2631.html?itemId=/content/journal/jgv/10.1099/vir.0.81819-0&mimeType=html&fmt=ahah

References

  1. Aminev A. G., Amineva S. P., Palmenberg A. C. 2003; Encephalomyocarditis virus (EMCV) proteins 2A and 3BCD localize to nuclei and inhibit cellular mRNA transcription but not rRNA transcription. Virus Res 95:59–73 [CrossRef]
    [Google Scholar]
  2. Baboonian C., Davies M. J., Booth J. C., McKenna W. J. 1997; Coxsackie B viruses and human heart disease. Curr Top Microbiol Immunol 223:31–52
    [Google Scholar]
  3. Badorff C., Lee G. H., Lamphear B. J., Martone M. E., Campbell K. P., Rhoads R. E., Knowlton K. U. 1999; Enteroviral protease 2A cleaves dystrophin: evidence of cytoskeletal disruption in an acquired cardiomyopathy. Nat Med 5:320–326 [CrossRef]
    [Google Scholar]
  4. Barboro P., D'Arrigo C., Diaspro A., Mormino M., Alberti I., Parodi S., Patrone E., Balbi C. 2002; Unraveling the organization of the internal nuclear matrix: RNA-dependent anchoring of NuMA to a lamin scaffold. Exp Cell Res 279:202–218 [CrossRef]
    [Google Scholar]
  5. Belsham G. J., Jackson R. J. 2000; Translation initiation on picornavirus RNA. In Translational Control of Gene Expression Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  6. Blyn L. B., Towner J. S., Semler B. L., Ehrenfeld E. 1997; Requirement of poly(rC) binding protein 2 for translation of poliovirus RNA. J Virol 71:6243–6246
    [Google Scholar]
  7. Bonneau A. M., Darveau A., Sonenberg N. 1985; Effect of viral infection on host protein synthesis and mRNA association with the cytoplasmic cytoskeletal structure. J Cell Biol 100:1209–1218 [CrossRef]
    [Google Scholar]
  8. Borer R. A., Lehner C. F., Eppenberger H. M., Nigg E. A. 1989; Major nucleolar proteins shuttle between nucleus and cytoplasm. Cell 56:379–390 [CrossRef]
    [Google Scholar]
  9. Boussadia O., Niepmann M., Creancier L., Prats A. C., Dautry F., Jacquemin-Sablon H. 2003; Unr is required in vivo for efficient initiation of translation from the internal ribosome entry sites of both rhinovirus and poliovirus. J Virol 77:3353–3359 [CrossRef]
    [Google Scholar]
  10. Bowles N. E., Towbin J. A. 1998; Molecular aspects of myocarditis. Curr Opin Cardiol 13:179–184
    [Google Scholar]
  11. Burke B., Stewart C. L. 2002; Life at the edge: the nuclear envelope and human disease. Nat Rev Mol Cell Biol 3:575–585 [CrossRef]
    [Google Scholar]
  12. Chelsky D., Ralph R., Jonak G. 1989; Sequence requirements for synthetic peptide-mediated translocation to the nucleus. Mol Cell Biol 9:2487–2492
    [Google Scholar]
  13. Chow L. H., Gauntt C. J., McManus B. M. 1991; Differential effects of myocarditic variants of coxsackievirus B3 in inbred mice. A pathologic characterization of heart tissue damage. Lab Invest 64:55–64
    [Google Scholar]
  14. Doherty N. S., Littman B. H., Reilly K., Swindell A. C., Buss J. M., Anderson N. L. 1998; Analysis of changes in acute-phase plasma proteins in an acute inflammatory response and in rheumatoid arthritis using two-dimensional gel electrophoresis. Electrophoresis 19:355–363 [CrossRef]
    [Google Scholar]
  15. Fankhauser C., Izaurralde E., Adachi Y., Wingfield P., Laemmli U. K. 1991; Specific complex of human immunodeficiency virus type 1 rev and nucleolar B23 proteins: dissociation by the Rev response element. Mol Cell Biol 11:2567–2575
    [Google Scholar]
  16. Fatkin D., MacRae C., Sasaki T. & 13 other authors 1999; Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N Engl J Med 341:1715–1724 [CrossRef]
    [Google Scholar]
  17. Fogg M. H., Teterina N. L., Ehrenfeld E. 2003; Membrane requirements for uridylylation of the poliovirus VPg protein and viral RNA synthesis in vitro. J Virol 77:11408–11416 [CrossRef]
    [Google Scholar]
  18. Frisk G., Torfason E. G., Diderholm H. 1984; Reverse radioimmunoassays of IgM and IgG antibodies to coxsackie B viruses in patients with acute myopericarditis. J Med Virol 14:191–200 [CrossRef]
    [Google Scholar]
  19. Gamarnik A. V., Andino R. 1997; Two functional complexes formed by KH domain containing proteins with the 5′ noncoding region of poliovirus RNA. RNA 3:882–892
    [Google Scholar]
  20. Gillum R. F. 1986; Idiopathic cardiomyopathy in the United States, 1970–1982. Am Heart J 111:752–755 [CrossRef]
    [Google Scholar]
  21. Gorg A., Obermaier C., Boguth G., Csordas A., Diaz J. J., Madjar J. J. 1997; Very alkaline immobilized pH gradients for two-dimensional electrophoresis of ribosomal and nuclear proteins. Electrophoresis 18:328–337 [CrossRef]
    [Google Scholar]
  22. Gromeier M., Alexander L., Wimmer E. 1996; Internal ribosomal entry site substitution eliminates neurovirulence in intergeneric poliovirus recombinants. Proc Natl Acad Sci U S A 93:2370–2375 [CrossRef]
    [Google Scholar]
  23. Haghighat A., Svitkin Y., Novoa I., Kuechler E., Skern T., Sonenberg N. 1996; The eIF4G-eIF4E complex is the target for direct cleavage by the rhinovirus 2A proteinase. J Virol 70:8444–8450
    [Google Scholar]
  24. Hellen C. U., Sarnow P. 2001; Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev 15:1593–1612 [CrossRef]
    [Google Scholar]
  25. Henke A., Launhardt H., Klement K., Stelzner A., Zell R., Munder T. 2000; Apoptosis in coxsackievirus B3-caused diseases: interaction between the capsid protein VP2 and the proapoptotic protein siva. J Virol 74:4284–4290 [CrossRef]
    [Google Scholar]
  26. Henke A., Nestler M., Strunze S. & 7 other authors 2001; The apoptotic capability of coxsackievirus B3 is influenced by the efficient interaction between the capsid protein VP2 and the proapoptotic host protein Siva. Virology 289:15–22 [CrossRef]
    [Google Scholar]
  27. Herrera J. E., Correia J. J., Jones A. E., Olson M. O. 1996; Sedimentation analyses of the salt- and divalent metal ion-induced oligomerization of nucleolar protein B23. Biochemistry 35:2668–2673 [CrossRef]
    [Google Scholar]
  28. Herzog A., Kuntz S., Daniel H., Wenzel U. 2004; Identification of biomarkers for the initiation of apoptosis in human preneoplastic colonocytes by proteome analysis. Int J Cancer 109:220–229 [CrossRef]
    [Google Scholar]
  29. Hozak P., Sasseville A. M., Raymond Y., Cook P. R. 1995; Lamin proteins form an internal nucleoskeleton as well as a peripheral lamina in human cells. J Cell Sci 108:635–644
    [Google Scholar]
  30. Huber S. A. 1997; Coxsackievirus-induced myocarditis is dependent on distinct immunopathogenic responses in different strains of mice. Lab Invest 76:691–701
    [Google Scholar]
  31. Hunt S. L., Jackson R. J. 1999; Polypyrimidine-tract binding protein (PTB) is necessary, but not sufficient, for efficient internal initiation of translation of human rhinovirus-2 RNA. RNA 5:344–359 [CrossRef]
    [Google Scholar]
  32. Hunt S. L., Hsuan J. J., Totty N., Jackson R. J. 1999; unr, a cellular cytoplasmic RNA-binding protein with five cold-shock domains, is required for internal initiation of translation of human rhinovirus RNA. Genes Dev 13:437–448 [CrossRef]
    [Google Scholar]
  33. Hutchison C. J. 2002; Lamins: building blocks or regulators of gene expression?. Nat Rev Mol Cell Biol 3:848–858 [CrossRef]
    [Google Scholar]
  34. Joachims M., Etchison D. 1992; Poliovirus infection results in structural alteration of a microtubule-associated protein. J Virol 66:5797–5804
    [Google Scholar]
  35. Kandolf R. 1998; Enteroviral myocarditis and dilated cardiomyopathy. Med Klin 93:215–222 (in German [CrossRef]
    [Google Scholar]
  36. Kandolf R., Hofschneider P. H. 1989; Viral heart disease. Springer Semin Immunopathol 11:1–13
    [Google Scholar]
  37. Kerekatte V., Keiper B. D., Badorff C., Cai A., Knowlton K. U., Rhoads R. E. 1999; Cleavage of poly(A)-binding protein by coxsackievirus 2A protease in vitro and in vivo: another mechanism for host protein synthesis shutoff?. J Virol 73:709–717
    [Google Scholar]
  38. Kim S. M., Park J. H., Chung S. K., Kim J. Y., Hwang H. Y., Chung K. C., Jo I., Park S. I., Nam J. H. 2004; Coxsackievirus B3 infection induces cyr61 activation via JNK to mediate cell death. J Virol 78:13479–13488 [CrossRef]
    [Google Scholar]
  39. Li Y. P. 1997; Protein B23 is an important human factor for the nucleolar localization of the human immunodeficiency virus protein Tat. J Virol 71:4098–4102
    [Google Scholar]
  40. Li Y. P., Busch R. K., Valdez B. C., Busch H. 1996; C23 interacts with B23, a putative nucleolar-localization-signal-binding protein. Eur J Biochem 237:153–158 [CrossRef]
    [Google Scholar]
  41. Li Y., Webster-Cyriaque J., Tomlinson C. C., Yohe M., Kenney S. 2004; Fatty acid synthase expression is induced by the Epstein–Barr virus immediate-early protein BRLF1 and is required for lytic viral gene expression. J Virol 78:4197–4206 [CrossRef]
    [Google Scholar]
  42. Manilal S., Sewry C. A., Pereboev A., Man N., Gobbi P., Hawkes S., Love D. R., Morris G. E. 1999; Distribution of emerin and lamins in the heart and implications for Emery–Dreifuss muscular dystrophy. Hum Mol Genet 8:353–359 [CrossRef]
    [Google Scholar]
  43. Okuwaki M., Iwamatsu A., Tsujimoto M., Nagata K. 2001; Identification of nucleophosmin/B23, an acidic nucleolar protein, as a stimulatory factor for in vitro replication of adenovirus DNA complexed with viral basic core proteins. J Mol Biol 311:41–55 [CrossRef]
    [Google Scholar]
  44. Pearson G., Robinson F., Beers Gibson T., Xu B. E., Karandikar M., Berman K., Cobb M. H. 2001; Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22:153–183
    [Google Scholar]
  45. Perkins D. N., Pappin D. J., Creasy D. M., Cottrell J. S. 1999; Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567 [CrossRef]
    [Google Scholar]
  46. Pilipenko E. V., Pestova T. V., Kolupaeva V. G., Khitrina E. V., Poperechnaya A. N., Agol V. I., Hellen C. U. 2000; A cell cycle-dependent protein serves as a template-specific translation initiation factor. Genes Dev 14:2028–2045
    [Google Scholar]
  47. Prasad K. V., Ao Z., Yoon Y., Wu M. X., Rizk M., Jacquot S., Schlossman S. F. 1997; CD27, a member of the tumor necrosis factor receptor family, induces apoptosis and binds to Siva, a proapoptotic protein. Proc Natl Acad Sci U S A 94:6346–6351 [CrossRef]
    [Google Scholar]
  48. Rabilloud T., Valette C., Lawrence J. J. 1994; Sample application by in-gel rehydration improves the resolution of two-dimensional electrophoresis with immobilized pH gradients in the first dimension. Electrophoresis 15:1552–1558 [CrossRef]
    [Google Scholar]
  49. Reyes M. P., Lerner A. M. 1985; Coxsackievirus myocarditis – with special reference to acute and chronic effects. Prog Cardiovasc Dis 27:373–394 [CrossRef]
    [Google Scholar]
  50. Sachs A. B., Buratowski S. 1997; Common themes in translational and transcriptional regulation. Trends Biochem Sci 22:189–192 [CrossRef]
    [Google Scholar]
  51. Sanchez J. C., Rouge V., Pisteur M., Ravier F., Tonella L., Moosmayer M., Wilkins M. R., Hochstrasser D. F. 1997; Improved and simplified in-gel sample application using reswelling of dry immobilized pH gradients. Electrophoresis 18:324–327 [CrossRef]
    [Google Scholar]
  52. Seko Y., Takahashi N., Oshima H. & 7 other authors 1999; Expression of tumour necrosis factor (TNF) receptor/ligand superfamily co-stimulatory molecules CD40, CD30L, CD27L, and OX40L in murine hearts with chronic ongoing myocarditis caused by coxsackie virus B3. J Pathol 188:423–430 [CrossRef]
    [Google Scholar]
  53. Si X., Luo H., Morgan A. & 7 other authors 2005; Stress-activated protein kinases are involved in coxsackievirus B3 viral progeny release. J Virol 79:13875–13881 [CrossRef]
    [Google Scholar]
  54. Stuurman N., Heins S., Aebi U. 1998; Nuclear lamins: their structure, assembly, and interactions. J Struct Biol 122:42–66 [CrossRef]
    [Google Scholar]
  55. Sugrue D. D., Rodeheffer R. J., Codd M. B., Ballard D. J., Fuster V., Gersh B. J. 1992; The clinical course of idiopathic dilated cardiomyopathy. A population-based study. Ann Intern Med 117:117–123 [CrossRef]
    [Google Scholar]
  56. Szebeni A., Herrera J. E., Olson M. O. 1995; Interaction of nucleolar protein B23 with peptides related to nuclear localization signals. Biochemistry 34:8037–8042 [CrossRef]
    [Google Scholar]
  57. Thompson S. R., Sarnow P. 2000; Regulation of host cell translation by viruses and effects on cell function. Curr Opin Microbiol 3:366–370 [CrossRef]
    [Google Scholar]
  58. Valdez B. C., Perlaky L., Henning D., Saijo Y., Chan P. K., Busch H. 1994; Identification of the nuclear and nucleolar localization signals of the protein p120. Interaction with translocation protein B23. J Biol Chem 269:23776–23783
    [Google Scholar]
  59. Waetzig G. H., Seegert D., Rosenstiel P., Nikolaus S., Schreiber S. 2002; p38 mitogen-activated protein kinase is activated and linked to TNF- α signaling in inflammatory bowel disease. J Immunol 168:5342–5351 [CrossRef]
    [Google Scholar]
  60. Walter B. L., Nguyen J. H., Ehrenfeld E., Semler B. L. 1999; Differential utilization of poly(rC) binding protein 2 in translation directed by picornavirus IRES elements. RNA 5:1570–1585 [CrossRef]
    [Google Scholar]
  61. Wessely R., Henke A., Zell R., Kandolf R., Knowlton K. U. 1998a; Low-level expression of a mutant coxsackieviral cDNA induces a myocytopathic effect in culture: an approach to the study of enteroviral persistence in cardiac myocytes. Circulation 98:450–457 [CrossRef]
    [Google Scholar]
  62. Wessely R., Klingel K., Santana L. F., Dalton N., Hongo M., Jonathan Lederer W., Kandolf R., Knowlton K. U. 1998b; Transgenic expression of replication-restricted enteroviral genomes in heart muscle induces defective excitation-contraction coupling and dilated cardiomyopathy. J Clin Invest 102:1444–1453 [CrossRef]
    [Google Scholar]
  63. Woodruff J. F. 1980; Viral myocarditis. A review. Am J Pathol 101:425–484
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81819-0
Loading
/content/journal/jgv/10.1099/vir.0.81819-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error