1887

Abstract

Variation in infectivity and genetic diversity in the structural proteins were compared among eight strains of (WEEV) to investigate WEEV virulence at the molecular level. A lethal intranasal infectivity model of WEEV was developed in adult BALB/c mice. All eight strains examined were 100 % lethal to adult mice in this model, but they varied considerably in the time to death. Based on the time to death, the eight strains could be classified into two pathotypes: a high-virulence pathotype, consisting of strains California, Fleming and McMillan, and a low-virulence pathotype, comprising strains CBA87, Mn548, B11, Mn520 and 71V-1658. To analyse genetic diversity in the structural protein genes, 26S RNAs from these eight strains were cloned and sequenced and found to have >96 % nucleotide and amino acid identity. A cluster diagram divided the eight WEEV strains into two genotypes that matched the pathotype grouping exactly, suggesting that variation in infectivity can be attributed to genetic diversity in the structural proteins among these eight strains. Furthermore, potential amino acid differences in some positions between the two groups were identified, suggesting that these amino acid variations contributed to the observed differences in virulence.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81815-0
2006-08-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/8/2353.html?itemId=/content/journal/jgv/10.1099/vir.0.81815-0&mimeType=html&fmt=ahah

References

  1. Aronson J. F., Grieder F. B., Davis N. L., Charles P. C., Knott T., Brown K., Johnston R. E. 2000; A single-site mutant and revertants arising in vivo define early steps in the pathogenesis of Venezuelan equine encephalitis virus. Virology 270:111–123 [CrossRef]
    [Google Scholar]
  2. Atkins G. J., Sheahan B. J., Liljeström P. 1999; The molecular pathogenesis of Semliki Forest virus: a model virus made useful?. J Gen Virol 80:2287–2297
    [Google Scholar]
  3. Bianchi T. I., Aviles G., Monath T. P., Sabattini M. S. 1993; Western equine encephalomyelitis: virulence markers and their epidemiologic significance. Am J Trop Med Hyg 49:322–328
    [Google Scholar]
  4. Caballero-Herrera A., Nilsson L. 2003; Molecular dynamics simulations of the E1/E2 transmembrane domain of the Semliki Forest virus. Biophys J 85:3646–3658 [CrossRef]
    [Google Scholar]
  5. Davis N. L., Fuller F. J., Dougherty W. G., Olmsted R. A., Johnston R. E. 1986; A single nucleotide change in the E2 glycoprotein gene of Sindbis virus affects penetration rate in cell culture and virulence in neonatal mice. Proc Natl Acad Sci U S A 83:6771–6775 [CrossRef]
    [Google Scholar]
  6. Frolova E. I., Fayzulin R. Z., Cook S. H., Griffin D. E., Rice C. M., Frolov I. 2002; Roles of nonstructural protein nsP2 and alpha/beta interferons in determining the outcome of Sindbis virus infection. J Virol 76:11254–11264 [CrossRef]
    [Google Scholar]
  7. Garoff H., Simons K. 1974; Location of the spike glycoproteins in the Semliki Forest virus membrane. Proc Natl Acad Sci U S A 71:3988–3992 [CrossRef]
    [Google Scholar]
  8. Garoff H., Söderlund H. 1978; The amphiphilic membrane glycoproteins of Semliki Forest virus are attached to the lipid bilayer by their COOH-terminal ends. J Mol Biol 124:535–549 [CrossRef]
    [Google Scholar]
  9. Gibbons D. L., Ahn A., Liao M., Hammar L., Cheng R. H., Kielian M. 2004; Multistep regulation of membrane insertion of the fusion peptide of Semliki Forest virus. J Virol 78:3312–3318 [CrossRef]
    [Google Scholar]
  10. Greenway T. E., Eldridge J. H., Ludwig G., Staas J. K., Smith J. F., Gilley R. M., Michalek S. M. 1995; Enhancement of protective immune responses to Venezuelan equine encephalitis (VEE) virus with microencapsulated vaccine. Vaccine 13:1411–1420 [CrossRef]
    [Google Scholar]
  11. Griffin D. E., Hahn C. S., Jackson A. C., Lustig S., Strauss E. G., Strauss J. H. 1989; The basis of Sindbis virus neurovirulence. In Cell Biology of Virus Entry, Replication and Pathogenesis pp  387–396 Edited Compans R. W., Helenius A., Oldstone M. B. New York: Alan R. Liss;
    [Google Scholar]
  12. Kinney R. M., Johnson B. J. B., Welch J. B., Tsuchiya K. R., Trent D. W. 1989; The full-length nucleotide sequences of the virulent Trinidad donkey strain of Venezuelan equine encephalitis virus and its attenuated vaccine derivative, strain TC-83. Virology 170:19–30 [CrossRef]
    [Google Scholar]
  13. Kramer L. D., Fallah H. M. 1999; Genetic variation among isolates of western equine encephalomyelitis virus from California. Am J Trop Med Hyg 60:708–713
    [Google Scholar]
  14. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  15. Liljeström P., Garoff H. 1991; Internally located cleavable signal sequences direct the formation of Semliki Forest virus membrane proteins from a polyprotein precursor. J Virol 65:147–154
    [Google Scholar]
  16. Lustig S., Jackson A. C., Hahn C. S., Griffin D. E., Strauss E. G., Strauss J. H. 1988; Molecular basis of Sindbis virus neurovirulence in mice. J Virol 62:2329–2336
    [Google Scholar]
  17. Netolitzky D. J., Schmaltz F. L., Parker M. D., Rayner G. A., Fisher G. R., Trent D. W., Bader D. E., Nagata L. P. 2000; Complete genomic RNA sequence of western equine encephalitis virus and expression of the structural genes. J Gen Virol 81:151–159
    [Google Scholar]
  18. Olmsted R. A., Baric R. S., Sawyer B. A., Johnston R. E. 1984; Sindbis virus mutants selected for rapid growth in cell culture display attenuated virulence in animals. Science 225:424–427 [CrossRef]
    [Google Scholar]
  19. Perera R., Owen K. E., Tellinghuisen T. L., Gorbalenya A. E., Kuhn R. J. 2001; Alphavirus nucleocapsid protein contains a putative coiled coil α -helix important for core assembly. J Virol 75:1–10 [CrossRef]
    [Google Scholar]
  20. Polo J. M., Johnston R. E. 1991; Mutational analysis of a virulence locus in the E2 glycoprotein gene of Sindbis virus. J Virol 65:6358–6361
    [Google Scholar]
  21. Polo J. M., Davis N. L., Rice C. M., Huang H. V., Johnston R. E. 1988; Molecular analysis of Sindbis virus pathogenesis in neonatal mice by using virus recombinants constructed in vitro. J Virol 62:2124–2133
    [Google Scholar]
  22. Reisen W. K., Monath T. P. 1988; Western equine encephalomyelitis. In The Arboviruses Epidemiology and Ecology vol. V pp  89–137 Edited by Monath T. P. Boca Raton, FL: CRC Press;
    [Google Scholar]
  23. Schlesinger S., Schlesinger M. J. 1972; Formation of Sindbis virus proteins: identification of a precursor for one of the envelope proteins. J Virol 10:925–932
    [Google Scholar]
  24. Schlesinger S., Schlesinger M. J. 1996; Togaviridae : the viruses and their replication. In Fields Virology , 3rd edn. pp  825–841 Edited by Fields B. N., Knipe D. M., Howley P. M. Philadelphia, PA: Lippincott–Raven;
    [Google Scholar]
  25. Shope R. E. 1980; Medical significance of togaviruses: an overview of diseases caused by togaviruses in man and in domestic and wild vertebrate animals. In The Togaviruses pp  47–82 Edited by Schlesinger R. W. New York: Academic Press;
    [Google Scholar]
  26. Strauss J. H., Strauss E. G. 1988; Evolution of RNA viruses. Annu Rev Microbiol 42:657–683 [CrossRef]
    [Google Scholar]
  27. Strauss J. H., Strauss E. G. 1994; The alphaviruses: gene expression, replication, and evolution. Microbiol Rev 58:491–562
    [Google Scholar]
  28. Takkinen K. 1986; Complete nucleotide sequence of the nonstructural protein genes of Semliki Forest virus. Nucleic Acids Res 14:5667–5682 [CrossRef]
    [Google Scholar]
  29. Tucker P. C., Lee S. H., Bui N., Martinie D., Griffin D. E. 1997; Amino acid changes in the Sindbis virus E2 glycoprotein that increase neurovirulence improve entry into neuroblastoma cells. J Virol 71:6106–6112
    [Google Scholar]
  30. Tuittila M., Hinkkanen A. E. 2003; Amino acid mutations in the replicase protein nsP3 of Semliki Forest virus cumulatively affect neurovirulence. J Gen Virol 84:1525–1533 [CrossRef]
    [Google Scholar]
  31. Tuittila M. T., Santagati M. G., Röyttä M., Määttä J. A., Hinkkanen A. E. 2000; Replicase complex genes of Semliki Forest virus confer lethal neurovirulence. J Virol 74:4579–4589 [CrossRef]
    [Google Scholar]
  32. Weaver S. C., Rico-Hesse R., Scott T. W. 1992; Genetic diversity and slow rates of evolution in New World alphaviruses. Curr Top Microbiol Immunol 176:99–117
    [Google Scholar]
  33. Weaver S. C., Kang W., Shirako Y., Rümenapf T., Strauss E. G., Strauss J. H. 1997; Recombinational history and molecular evolution of western equine encephalomyelitis complex alphaviruses. J Virol 71:613–623
    [Google Scholar]
  34. Wengler G., Würkner D., Wengler G. 1992; Identification of a sequence element in the alphavirus core protein which mediates interaction of cores with ribosomes and the disassembly of cores. Virology 191:880–888 [CrossRef]
    [Google Scholar]
  35. Zlotnik I., Peacock S., Grant D. P., Batter-Hatton D. 1972; The pathogenesis of western equine encephalitis virus (W.E.E.) in adult hamsters with special reference to the long and short term effects on the C.N.S. of the attenuated clone 15 variant. Br J Exp Pathol 53:59–77
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81815-0
Loading
/content/journal/jgv/10.1099/vir.0.81815-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error