1887

Abstract

(RSV) is the leading cause of paediatric respiratory disease and is the focus of antiviral- and vaccine-development programmes. These goals have been aided by an understanding of the virus genome architecture and the mechanisms by which it is expressed and replicated. RSV is a member of the order and, as such, has a genome consisting of a single strand of negative-sense RNA. At first glance, transcription and genome replication appear straightforward, requiring self-contained promoter regions at the 3′ ends of the genome and antigenome RNAs, short -acting elements flanking each of the genes and one polymerase. However, from these minimal elements, the virus is able to generate an array of capped, methylated and polyadenylated mRNAs and encapsidated antigenome and genome RNAs, all in the appropriate ratios to facilitate virus replication. The apparent simplicity of genome expression and replication is a consequence of considerable complexity in the polymerase structure and its cognate -acting sequences; here, our understanding of mechanisms by which the RSV polymerase proteins interact with signals in the RNA template to produce different RNA products is reviewed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81786-0
2006-07-01
2019-12-12
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/7/1805.html?itemId=/content/journal/jgv/10.1099/vir.0.81786-0&mimeType=html&fmt=ahah

References

  1. Adkins, S., Sawicki, S. S., Faurote, G., Siegel, R. W. & Kao, C. C. ( 1998; ). Mechanistic analysis of RNA synthesis by RNA-dependent RNA polymerase from two promoters reveals similarities to DNA-dependent RNA polymerase. RNA 4, 455–470.
    [Google Scholar]
  2. Ahmadian, G., Randhawa, J. S. & Easton, A. J. ( 2000; ). Expression of the ORF-2 protein of the human respiratory syncytial virus M2 gene is initiated by a ribosomal termination-dependent reinitiation mechanism. EMBO J 19, 2681–2689.[CrossRef]
    [Google Scholar]
  3. Barik, S. ( 1992; ). Transcription of human respiratory syncytial virus genome RNA in vitro: requirement of cellular factor(s). J Virol 66, 6813–6818.
    [Google Scholar]
  4. Barik, S. ( 1993; ). The structure of the 5′ terminal cap of the respiratory syncytial virus mRNA. J Gen Virol 74, 485–490.[CrossRef]
    [Google Scholar]
  5. Barik, S., McLean, T. & Dupuy, L. C. ( 1995; ). Phosphorylation of Ser232 directly regulates the transcriptional activity of the P protein of human respiratory syncytial virus: phosphorylation of Ser237 may play an accessory role. Virology 213, 405–412.[CrossRef]
    [Google Scholar]
  6. Barr, J. N., Whelan, S. P. J. & Wertz, G. W. ( 2002; ). Transcriptional control of the RNA-dependent RNA polymerase of vesicular stomatitis virus. Biochim Biophys Acta 1577, 337–353.[CrossRef]
    [Google Scholar]
  7. Beckes, J. D., Haller, A. A. & Perrault, J. ( 1987; ). Differential effect of ATP concentration on synthesis of vesicular stomatitis virus leader RNAs and mRNAs. J Virol 61, 3470–3478.
    [Google Scholar]
  8. Bermingham, A. & Collins, P. L. ( 1999; ). The M2-2 protein of human respiratory syncytial virus is a regulatory factor involved in the balance between RNA replication and transcription. Proc Natl Acad Sci U S A 96, 11259–11264.[CrossRef]
    [Google Scholar]
  9. Bhella, D., Ralph, A., Murphy, L. B. & Yeo, R. P. ( 2002; ). Significant differences in nucleocapsid morphology within the Paramyxoviridae. J Gen Virol 83, 1831–1839.
    [Google Scholar]
  10. Brown, G., Rixon, H. W. McL., Steel, J., McDonald, T. P., Pitt, A. R., Graham, S. & Sugrue, R. J. ( 2005; ). Evidence for an association between heat shock protein 70 and the respiratory syncytial virus polymerase complex within lipid-raft membranes during virus infection. Virology 338, 69–80.[CrossRef]
    [Google Scholar]
  11. Browning, D. F. & Busby, S. J. W. ( 2004; ). The regulation of bacterial transcription initiation. Nat Rev Microbiol 2, 57–65.[CrossRef]
    [Google Scholar]
  12. Bukreyev, A., Murphy, B. R. & Collins, P. L. ( 2000; ). Respiratory syncytial virus can tolerate an intergenic sequence of at least 160 nucleotides with little effect on transcription or replication in vitro and in vivo. J Virol 74, 11017–11026.[CrossRef]
    [Google Scholar]
  13. Burke, E., Dupuy, L., Wall, C. & Barik, S. ( 1998; ). Role of cellular actin in the gene expression and morphogenesis of human respiratory syncytial virus. Virology 252, 137–148.[CrossRef]
    [Google Scholar]
  14. Burke, E., Mahoney, N. M., Almo, S. C. & Barik, S. ( 2000; ). Profilin is required for optimal actin-dependent transcription of respiratory syncytial virus genome RNA. J Virol 74, 669–675.[CrossRef]
    [Google Scholar]
  15. Calain, P. & Roux, L. ( 1993; ). The rule of six, a basic feature for efficient replication of Sendai virus defective interfering RNA. J Virol 67, 4822–4830.
    [Google Scholar]
  16. Cartee, T. L. & Wertz, G. W. ( 2001; ). Respiratory syncytial virus M2-1 protein requires phosphorylation for efficient function and binds viral RNA during infection. J Virol 75, 12188–12197.[CrossRef]
    [Google Scholar]
  17. Cartee, T. L., Megaw, A. G., Oomens, A. G. P. & Wertz, G. W. ( 2003; ). Identification of a single amino acid change in the human respiratory syncytial virus L protein that affects transcriptional termination. J Virol 77, 7352–7360.[CrossRef]
    [Google Scholar]
  18. Castagné, N., Barbier, A., Bernard, J., Rezaei, H., Huet, J.-C., Henry, C., Da Costa, B. & Eléouët, J.-F. ( 2004; ). Biochemical characterization of the respiratory syncytial virus P–P and P–N complexes and localization of the P protein oligomerization domain. J Gen Virol 85, 1643–1653.[CrossRef]
    [Google Scholar]
  19. Cheng, X., Park, H., Zhou, H. & Jin, H. ( 2005; ). Overexpression of the M2-2 protein of respiratory syncytial virus inhibits viral replication. J Virol 79, 13943–13952.[CrossRef]
    [Google Scholar]
  20. Chuang, J. L. & Perrault, J. ( 1997; ). Initiation of vesicular stomatitis virus mutant polR1 transcription internally at the N gene in vitro. J Virol 71, 1466–1475.
    [Google Scholar]
  21. Collins, P. L. & Murphy, B. R. ( 2002; ). Respiratory syncytial virus: reverse genetics and vaccine strategies. Virology 296, 204–211.[CrossRef]
    [Google Scholar]
  22. Collins, P. L. & Wertz, G. W. ( 1983; ). cDNA cloning and transcriptional mapping of nine polyadenylylated RNAs encoded by the genome of human respiratory syncytial virus. Proc Natl Acad Sci U S A 80, 3208–3212.[CrossRef]
    [Google Scholar]
  23. Collins, P. L. & Wertz, G. W. ( 1985; ). Nucleotide sequences of the 1B and 1C nonstructural protein mRNAs of human respiratory syncytial virus. Virology 143, 442–451.[CrossRef]
    [Google Scholar]
  24. Collins, P. L., Dickens, L. E., Buckler-White, A., Olmsted, R. A., Spriggs, M. K., Camargo, E. & Coelingh, K. V. W. ( 1986; ). Nucleotide sequences for the gene junctions of human respiratory syncytial virus reveal distinctive features of intergenic structure and gene order. Proc Natl Acad Sci U S A 83, 4594–4598.[CrossRef]
    [Google Scholar]
  25. Collins, P. L., Olmsted, R. A., Spriggs, M. K., Johnson, P. R. & Buckler-White, A. J. ( 1987; ). Gene overlap and site-specific attenuation of transcription of the viral polymerase L gene of human respiratory syncytial virus. Proc Natl Acad Sci U S A 84, 5134–5138.[CrossRef]
    [Google Scholar]
  26. Collins, P. L., Mink, M. A. & Stec, D. S. ( 1991; ). Rescue of synthetic analogs of respiratory syncytial virus genomic RNA and effect of truncations and mutations on the expression of a foreign reporter gene. Proc Natl Acad Sci U S A 88, 9663–9667.[CrossRef]
    [Google Scholar]
  27. Collins, P. L., Hill, M. G., Cristina, J. & Grosfeld, H. ( 1996; ). Transcription elongation factor of respiratory syncytial virus, a nonsegmented negative-strand RNA virus. Proc Natl Acad Sci U S A 93, 81–85.[CrossRef]
    [Google Scholar]
  28. Collins, P. L., Whitehead, S. S., Bukreyev, A., Fearns, R., Teng, M. N., Juhasz, K., Chanock, R. M. & Murphy, B. R. ( 1999; ). Rational design of live-attenuated recombinant vaccine virus for human respiratory syncytial virus by reverse genetics. Adv Virus Res 54, 423–451.
    [Google Scholar]
  29. Collins, P. L., Chanock, R. M. & Murphy, B. R. ( 2001; ). Respiratory syncytial virus. In Fields Virology, 4th edn, pp. 1443–1485. Edited by D. M. Knipe & P. M. Howley. Philadelphia, PA: Lippincott Williams & Wilkins.
  30. Cowton, V. M. & Fearns, R. ( 2005; ). Evidence that the respiratory syncytial virus polymerase is recruited to nucleotides 1 to 11 at the 3′ end of the nucleocapsid and can scan to access internal signals. J Virol 79, 11311–11322.[CrossRef]
    [Google Scholar]
  31. Cuesta, I., Geng, X., Asenjo, A. & Villanueva, N. ( 2000; ). Structural phosphoprotein M2-1 of the human respiratory syncytial virus is an RNA binding protein. J Virol 74, 9858–9867.[CrossRef]
    [Google Scholar]
  32. Dickens, L. E., Collins, P. L. & Wertz, G. W. ( 1984; ). Transcriptional mapping of human respiratory syncytial virus. J Virol 52, 364–369.
    [Google Scholar]
  33. Dupuy, L. C., Dobson, S., Bitko, V. & Barik, S. ( 1999; ). Casein kinase 2-mediated phosphorylation of respiratory syncytial virus phosphoprotein P is essential for the transcription elongation activity of the viral polymerase; phosphorylation by casein kinase 1 occurs mainly at Ser215 and is without effect. J Virol 73, 8384–8392.
    [Google Scholar]
  34. Dvir, A. ( 2002; ). Promoter escape by RNA polymerase II. Biochim Biophys Acta 1577, 208–223.[CrossRef]
    [Google Scholar]
  35. Fearns, R. & Collins, P. L. ( 1999a; ). Model for polymerase access to the overlapped L gene of respiratory syncytial virus. J Virol 73, 388–397.
    [Google Scholar]
  36. Fearns, R. & Collins, P. L. ( 1999b; ). Role of the M2-1 transcription antitermination protein of respiratory syncytial virus in sequential transcription. J Virol 73, 5852–5864.
    [Google Scholar]
  37. Fearns, R., Peeples, M. E. & Collins, P. L. ( 1997; ). Increased expression of the N protein of respiratory syncytial virus stimulates minigenome replication but does not alter the balance between the synthesis of mRNA and antigenome. Virology 236, 188–201.[CrossRef]
    [Google Scholar]
  38. Fearns, R., Collins, P. L. & Peeples, M. E. ( 2000; ). Functional analysis of the genomic and antigenomic promoters of human respiratory syncytial virus. J Virol 74, 6006–6014.[CrossRef]
    [Google Scholar]
  39. Fearns, R., Peeples, M. E. & Collins, P. L. ( 2002; ). Mapping the transcription and replication promoters of respiratory syncytial virus. J Virol 76, 1663–1672.[CrossRef]
    [Google Scholar]
  40. Ferron, F., Longhi, S., Henrissat, B. & Canard, B. ( 2002; ). Viral RNA-polymerases – a predicted 2′-O-ribose methyltransferase domain shared by all Mononegavirales. Trends Biochem Sci 27, 222–224.[CrossRef]
    [Google Scholar]
  41. Finke, S. & Conzelmann, K.-K. ( 1997; ). Ambisense gene expression from recombinant rabies virus: random packaging of positive- and negative-strand ribonucleoprotein complexes into rabies virions. J Virol 71, 7281–7288.
    [Google Scholar]
  42. García, J., García-Barreno, B., Vivo, A. & Melero, J. A. ( 1993; ). Cytoplasmic inclusions of respiratory syncytial virus-infected cells: formation of inclusion bodies in transfected cells that coexpress the nucleoprotein, the phosphoprotein, and the 22K protein. Virology 195, 243–247.[CrossRef]
    [Google Scholar]
  43. García-Barreno, B., Jorcano, J. L., Aukenbauer, T., Lopez-Galindez, C. & Melero, J. A. ( 1988; ). Participation of cytoskeletal intermediate filaments in the infectious cycle of human respiratory syncytial virus (RSV). Virus Res 9, 307–321.[CrossRef]
    [Google Scholar]
  44. García-Barreno, B., Delgado, T. & Melero, J. A. ( 1996; ). Identification of protein regions involved in the interaction of human respiratory syncytial virus phosphoprotein and nucleoprotein: significance for nucleocapsid assembly and formation of cytoplasmic inclusions. J Virol 70, 801–808.
    [Google Scholar]
  45. García-Barreno, B., Steel, J., Payá, M., Martínez-Sobrido, L., Delgado, T., Yeo, R. P. & Melero, J. A. ( 2005; ). Epitope mapping of human respiratory syncytial virus 22K transcription antitermination factor: role of N-terminal sequences in protein folding. J Gen Virol 86, 1103–1107.[CrossRef]
    [Google Scholar]
  46. Grdzelishvili, V. Z., Smallwood, S., Tower, D., Hall, R. L., Hunt, D. M. & Moyer, S. A. ( 2005; ). A single amino acid change in the L-polymerase protein of vesicular stomatitis virus completely abolishes viral mRNA cap methylation. J Virol 79, 7327–7337.[CrossRef]
    [Google Scholar]
  47. Greive, S. J. & von Hippel, P. H. ( 2005; ). Thinking quantitatively about transcriptional regulation. Nat Rev Mol Cell Biol 6, 221–232.[CrossRef]
    [Google Scholar]
  48. Grosfeld, H., Hill, M. G. & Collins, P. L. ( 1995; ). RNA replication by respiratory syncytial virus (RSV) is directed by the N, P, and L proteins; transcription also occurs under these conditions but requires RSV superinfection for efficient synthesis of full-length mRNA. J Virol 69, 5677–5686.
    [Google Scholar]
  49. Gubbay, O., Curran, J. & Kolakofsky, D. ( 2001; ). Sendai virus genome synthesis and assembly are coupled: a possible mechanism to promote viral RNA polymerase processivity. J Gen Virol 82, 2895–2903.
    [Google Scholar]
  50. Hardy, R. W. & Wertz, G. W. ( 1998; ). The product of the respiratory syncytial virus M2 gene ORF1 enhances readthrough of intergenic junctions during viral transcription. J Virol 72, 520–526.
    [Google Scholar]
  51. Hardy, R. W. & Wertz, G. W. ( 2000; ). The Cys3-His1 motif of the respiratory syncytial virus M2-1 protein is essential for protein function. J Virol 74, 5880–5885.[CrossRef]
    [Google Scholar]
  52. Hardy, R. W., Harmon, S. B. & Wertz, G. W. ( 1999; ). Diverse gene junctions of respiratory syncytial virus modulate the efficiency of transcription termination and respond differently to M2-mediated antitermination. J Virol 73, 170–176.
    [Google Scholar]
  53. Harmon, S. B. & Wertz, G. W. ( 2002; ). Transcriptional termination modulated by nucleotides outside the characterized gene end sequence of respiratory syncytial virus. Virology 300, 304–315.[CrossRef]
    [Google Scholar]
  54. Harmon, S. B., Megaw, A. G. & Wertz, G. W. ( 2001; ). RNA sequences involved in transcriptional termination of respiratory syncytial virus. J Virol 75, 36–44.[CrossRef]
    [Google Scholar]
  55. Hinzman, E. E., Barr, J. N. & Wertz, G. W. ( 2002; ). Identification of an upstream sequence element required for vesicular stomatitis virus mRNA transcription. J Virol 76, 7632–7641.[CrossRef]
    [Google Scholar]
  56. Horikami, S. M., Curran, J., Kolakofsky, D. & Moyer, S. A. ( 1992; ). Complexes of Sendai virus NP-P and P-L proteins are required for defective interfering particle genome replication in vitro. J Virol 66, 4901–4908.
    [Google Scholar]
  57. Hsu, L. M. ( 2002; ). Promoter clearance and escape in prokaryotes. Biochim Biophys Acta 1577, 191–207.[CrossRef]
    [Google Scholar]
  58. Iseni, F., Baudin, F., Blondel, D. & Ruigrok, R. W. ( 2000; ). Structure of the RNA inside the vesicular stomatitis virus nucleocapsid. RNA 6, 270–281.[CrossRef]
    [Google Scholar]
  59. Iseni, F., Baudin, F., Garcin, D., Marq, J. B., Ruigrok, R. W. & Kolakofsky, D. ( 2002; ). Chemical modification of nucleotide bases and mRNA editing depend on hexamer or nucleoprotein phase in Sendai virus nucleocapsids. RNA 8, 1056–1067.[CrossRef]
    [Google Scholar]
  60. Iverson, L. E. & Rose, J. K. ( 1981; ). Localized attenuation and discontinuous synthesis during vesicular stomatitis virus transcription. Cell 23, 477–484.[CrossRef]
    [Google Scholar]
  61. Jin, H., Cheng, X., Zhou, H. Z. Y., Li, S. & Seddiqui, A. ( 2000; ). Respiratory syncytial virus that lacks open reading frame 2 of the M2 gene (M2-2) has altered growth characteristics and is attenuated in rodents. J Virol 74, 74–82.[CrossRef]
    [Google Scholar]
  62. Johnson, P. R. & Collins, P. L. ( 1988; ). The A and B subgroups of human respiratory syncytial virus: comparison of intergenic and gene-overlap sequences. J Gen Virol 69, 2901–2906.[CrossRef]
    [Google Scholar]
  63. Juhasz, K., Murphy, B. R. & Collins, P. L. ( 1999; ). The major attenuating mutations of the respiratory syncytial virus vaccine candidate cpts530/1009 specify temperature-sensitive defects in transcription and replication and a non-temperature-sensitive alteration in mRNA termination. J Virol 73, 5176–5180.
    [Google Scholar]
  64. Kallewaard, N. L., Bowen, A. L. & Crowe, J. E., Jr ( 2005; ). Cooperativity of actin and microtubule elements during replication of respiratory syncytial virus. Virology 331, 73–81.[CrossRef]
    [Google Scholar]
  65. Karlin, D., Ferron, F., Canard, B. & Longhi, S. ( 2003; ). Structural disorder and modular organization in Paramyxovirinae N and P. J Gen Virol 84, 3239–3252.[CrossRef]
    [Google Scholar]
  66. Khattar, S. K., Yunus, A. S., Collins, P. L. & Samal, S. K. ( 2000; ). Mutational analysis of the bovine respiratory syncytial virus nucleocapsid protein using a minigenome system: mutations that affect encapsidation, RNA synthesis, and interaction with the phosphoprotein. Virology 270, 215–228.[CrossRef]
    [Google Scholar]
  67. Kingston, R. L., Hamel, D. J., Gay, L. S., Dahlquist, F. W. & Matthews, B. W. ( 2004; ). Structural basis for the attachment of a paramyxoviral polymerase to its template. Proc Natl Acad Sci U S A 101, 8301–8306.[CrossRef]
    [Google Scholar]
  68. Kolakofsky, D., Pelet, T., Garcin, D., Hausmann, S., Curran, J. & Roux, L. ( 1998; ). Paramyxovirus RNA synthesis and the requirement for hexamer genome length: the rule of six revisited. J Virol 72, 891–899.
    [Google Scholar]
  69. Kolakofsky, D., Le Mercier, P., Iseni, F. & Garcin, D. ( 2004; ). Viral RNA polymerase scanning and the gymnastics of Sendai virus RNA synthesis. Virology 318, 463–473.[CrossRef]
    [Google Scholar]
  70. Krempl, C., Murphy, B. R. & Collins, P. L. ( 2002; ). Recombinant respiratory syncytial virus with the G and F genes shifted to the promoter-proximal positions. J Virol 76, 11931–11942.[CrossRef]
    [Google Scholar]
  71. Kuo, L., Grosfeld, H., Cristina, J., Hill, M. G. & Collins, P. L. ( 1996a; ). Effects of mutations in the gene-start and gene-end sequence motifs on transcription of monocistronic and dicistronic minigenomes of respiratory syncytial virus. J Virol 70, 6892–6901.
    [Google Scholar]
  72. Kuo, L., Fearns, R. & Collins, P. L. ( 1996b; ). The structurally diverse intergenic regions of respiratory syncytial virus do not modulate sequential transcription by a dicistronic minigenome. J Virol 70, 6143–6150.
    [Google Scholar]
  73. Kuo, L., Fearns, R. & Collins, P. L. ( 1997; ). Analysis of the gene start and gene end signals of human respiratory syncytial virus: quasi-templated initiation at position 1 of the encoded mRNA. J Virol 71, 4944–4953.
    [Google Scholar]
  74. Le Mercier, P., Garcin, D., Hausmann, S. & Kolakofsky, D. ( 2002; ). Ambisense Sendai viruses are inherently unstable but are useful to study viral RNA synthesis. J Virol 76, 5492–5502.[CrossRef]
    [Google Scholar]
  75. Le Mercier, P., Garcin, D., Garcia, E. & Kolakofsky, D. ( 2003; ). Competition between the Sendai virus N mRNA start site and the genome 3′-end promoter for viral RNA polymerase. J Virol 77, 9147–9155.[CrossRef]
    [Google Scholar]
  76. Li, T. & Pattnaik, A. K. ( 1999; ). Overlapping signals for transcription and replication at the 3′ terminus of the vesicular stomatitis virus genome. J Virol 73, 444–452.
    [Google Scholar]
  77. Li, J., Fontaine-Rodriguez, E. C. & Whelan, S. P. J. ( 2005; ). Amino acid residues within conserved domain VI of the vesicular stomatitis virus large polymerase protein essential for RNA cap methyltransferase activity. J Virol 79, 13373–13384.[CrossRef]
    [Google Scholar]
  78. Liuzzi, M., Mason, S. W., Cartier, M. & 17 other authors ( 2005; ). Inhibitors of respiratory syncytial virus replication target cotranscriptional mRNA guanylylation by viral RNA-dependent RNA polymerase. J Virol 79, 13105–13115.[CrossRef]
    [Google Scholar]
  79. Lu, B., Ma, C.-H., Brazas, R. & Jin, H. ( 2002; ). The major phosphorylation sites of the respiratory syncytial virus phosphoprotein are dispensable for virus replication in vitro. J Virol 76, 10776–10784.[CrossRef]
    [Google Scholar]
  80. Mason, S. W., Aberg, E., Lawetz, C., DeLong, R., Whitehead, P. & Liuzzi, M. ( 2003; ). Interaction between human respiratory syncytial virus (RSV) M2-1 and P proteins is required for reconstitution of M2-1-dependent RSV minigenome activity. J Virol 77, 10670–10676.[CrossRef]
    [Google Scholar]
  81. Mason, S. W., Lawetz, C., Gaudette, Y., Dô, F., Scouten, E., Lagacé, L., Simoneau, B. & Liuzzi, M. ( 2004; ). Polyadenylation-dependent screening assay for respiratory syncytial virus RNA transcriptase activity and identification of an inhibitor. Nucleic Acids Res 32, 4758–4767.[CrossRef]
    [Google Scholar]
  82. Mazumder, B. & Barik, S. ( 1994; ). Requirement of casein kinase II-mediated phosphorylation for the transcriptional activity of human respiratory syncytial viral phosphoprotein P: transdominant negative phenotype of phosphorylation-defective P mutants. Virology 205, 104–111.[CrossRef]
    [Google Scholar]
  83. McDonald, T. P., Pitt, A. R., Brown, G., Rixon, H. W. McL. & Sugrue, R. J. ( 2004; ). Evidence that the respiratory syncytial virus polymerase complex associates with lipid rafts in virus-infected cells: a proteomic analysis. Virology 330, 147–157.[CrossRef]
    [Google Scholar]
  84. McGivern, D. R., Collins, P. L. & Fearns, R. ( 2005; ). Identification of internal sequences in the 3′ leader region of human respiratory syncytial virus that enhance transcription and confer replication processivity. J Virol 79, 2449–2460.[CrossRef]
    [Google Scholar]
  85. Mellon, M. G. & Emerson, S. U. ( 1978; ). Rebinding of transcriptase components (L and NS proteins) to the nucleocapsid template of vesicular stomatitis virus. J Virol 27, 560–567.
    [Google Scholar]
  86. Mink, M. A., Stec, D. S. & Collins, P. L. ( 1991; ). Nucleotide sequences of the 3′ leader and 5′ trailer regions of human respiratory syncytial virus genomic RNA. Virology 185, 615–624.[CrossRef]
    [Google Scholar]
  87. Moudy, R. M., Harmon, S. B., Sullender, W. M. & Wertz, G. W. ( 2003; ). Variations in transcription termination signals of human respiratory syncytial virus clinical isolates affect gene expression. Virology 313, 250–260.[CrossRef]
    [Google Scholar]
  88. Moudy, R. M., Sullender, W. M. & Wertz, G. W. ( 2004; ). Variations in intergenic region sequences of human respiratory syncytial virus clinical isolates: analysis of effects on transcriptional regulation. Virology 327, 121–133.[CrossRef]
    [Google Scholar]
  89. Müller, R., Poch, O., Delarue, M., Bishop, D. H. L. & Bouloy, M. ( 1994; ). Rift valley fever virus L segment: correction of the sequence and possible functional role of newly identified regions conserved in RNA-dependent polymerases. J Gen Virol 75, 1345–1352.[CrossRef]
    [Google Scholar]
  90. Murphy, S. K. & Parks, G. D. ( 1999; ). RNA replication for the paramyxovirus simian virus 5 requires an internal repeated (CGNNNN) sequence motif. J Virol 73, 805–809.
    [Google Scholar]
  91. Murphy, S. K., Ito, Y. & Parks, G. D. ( 1998; ). A functional antigenomic promoter for the paramyxovirus simian virus 5 requires proper spacing between an essential internal segment and the 3′ terminus. J Virol 72, 10–19.
    [Google Scholar]
  92. Murphy, L. B., Loney, C., Murray, J., Bhella, D., Ashton, P. & Yeo, R. P. ( 2003; ). Investigations into the amino-terminal domain of the respiratory syncytial virus nucleocapsid protein reveal elements important for nucleocapsid formation and interaction with the phosphoprotein. Virology 307, 143–153.[CrossRef]
    [Google Scholar]
  93. Ogino, T., Kobayashi, M., Iwama, M. & Mizumoto, K. ( 2005; ). Sendai virus RNA-dependent RNA polymerase L protein catalyzes cap methylation of virus-specific mRNA. J Biol Chem 280, 4429–4435.[CrossRef]
    [Google Scholar]
  94. O'Reilly, E. K. & Kao, C. C. ( 1998; ). Analysis of RNA-dependent RNA polymerase structure and function as guided by known polymerase structures and computer predictions of secondary structure. Virology 252, 287–303.[CrossRef]
    [Google Scholar]
  95. Orphanides, G. & Reinberg, D. ( 2002; ). A unified theory of gene expression. Cell 108, 439–451.[CrossRef]
    [Google Scholar]
  96. Patton, J. T., Davis, N. L. & Wertz, G. W. ( 1984; ). N protein alone satisfies the requirement for protein synthesis during RNA replication of vesicular stomatitis virus. J Virol 49, 303–309.
    [Google Scholar]
  97. Peeples, M. E. & Collins, P. L. ( 2000; ). Mutations in the 5′ trailer region of a respiratory syncytial virus minigenome which limit RNA replication to one step. J Virol 74, 146–155.[CrossRef]
    [Google Scholar]
  98. Perrault, J. & McLear, P. W. ( 1984; ). ATP dependence of vesicular stomatitis virus transcription initiation and modulation by mutation in the nucleocapsid protein. J Virol 51, 635–642.
    [Google Scholar]
  99. Poch, O., Sauvaget, I., Delarue, M. & Tordo, N. ( 1989; ). Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO J 8, 3867–3874.
    [Google Scholar]
  100. Poch, O., Blumberg, B. M., Bougueleret, L. & Tordo, N. ( 1990; ). Sequence comparison of five polymerases (L proteins) of unsegmented negative-strand RNA viruses: theoretical assignment of functional domains. J Gen Virol 71, 1153–1162.[CrossRef]
    [Google Scholar]
  101. Qanungo, K. R., Shaji, D., Mathur, M. & Banerjee, A. K. ( 2004; ). Two RNA polymerase complexes from vesicular stomatitis virus-infected cells that carry out transcription and replication of genome RNA. Proc Natl Acad Sci U S A 101, 5952–5957.[CrossRef]
    [Google Scholar]
  102. Rose, J. K. ( 1975; ). Heterogeneous 5′-terminal structures occur on vesicular stomatitis virus mRNAs. J Biol Chem 250, 8098–8104.
    [Google Scholar]
  103. Rose, J. K., Lodish, H. F. & Brock, M. L. ( 1977; ). Giant heterogeneous polyadenylic acid on vesicular stomatitis virus mRNA synthesized in vitro in the presence of S-adenosylhomocysteine. J Virol 21, 683–693.
    [Google Scholar]
  104. Samal, S. K. & Collins, P. L. ( 1996; ). RNA replication by a respiratory syncytial virus RNA analog does not obey the rule of six and retains a nonviral trinucleotide extension at the leader end. J Virol 70, 5075–5082.
    [Google Scholar]
  105. Sánchez-Seco, M. P., Navarro, J., Martínez, R. & Villanueva, N. ( 1995; ). C-Terminal phosphorylation of human respiratory syncytial virus P protein occurs mainly at serine residue 232. J Gen Virol 76, 425–430.[CrossRef]
    [Google Scholar]
  106. Shilatifard, A. ( 2004; ). Transcriptional elongation control by RNA polymerase II: a new frontier. Biochim Biophys Acta 1677, 79–86.[CrossRef]
    [Google Scholar]
  107. Stec, D. S., Hill, M. G., III & Collins, P. L. ( 1991; ). Sequence analysis of the polymerase L gene of human respiratory syncytial virus and predicted phylogeny of nonsegmented negative-strand viruses. Virology 183, 273–287.[CrossRef]
    [Google Scholar]
  108. Stillman, E. A. & Whitt, M. A. ( 1999; ). Transcript initiation and 5′-end modification are separable events during vesicular stomatitis virus transcription. J Virol 73, 7199–7209.
    [Google Scholar]
  109. Sun, J.-H. & Kao, C. C. ( 1997a; ). RNA synthesis by the brome mosaic virus RNA-dependent RNA polymerase: transition from initiation to elongation. Virology 233, 63–73.[CrossRef]
    [Google Scholar]
  110. Sun, J.-H. & Kao, C. C. ( 1997b; ). Characterization of RNA products associated with or aborted by a viral RNA-dependent RNA polymerase. Virology 236, 348–353.[CrossRef]
    [Google Scholar]
  111. Sun, J.-H., Adkins, S., Faurote, G. & Kao, C. C. ( 1996; ). Initiation of (−)-strand RNA synthesis catalyzed by the BMV RNA-dependent RNA polymerase: synthesis of oligonucleotides. Virology 226, 1–12.[CrossRef]
    [Google Scholar]
  112. Sutherland, K. A., Collins, P. L. & Peeples, M. E. ( 2001; ). Synergistic effects of gene-end signal mutations and the M2-1 protein on transcription termination by respiratory syncytial virus. Virology 288, 295–307.[CrossRef]
    [Google Scholar]
  113. Tang, R. S., Nguyen, N., Cheng, X. & Jin, H. ( 2001; ). Requirement of cysteines and length of the human respiratory syncytial virus M2-1 protein for protein function and virus viability. J Virol 75, 11328–11335.[CrossRef]
    [Google Scholar]
  114. Tapparel, C., Maurice, D. & Roux, L. ( 1998; ). The activity of Sendai virus genomic and antigenomic promoters requires a second element past the leader template regions: a motif (GNNNNN)3 is essential for replication. J Virol 72, 3117–3128.
    [Google Scholar]
  115. Teng, M. N. & Collins, P. L. ( 1998; ). Identification of the respiratory syncytial virus proteins required for formation and passage of helper-dependent infectious particles. J Virol 72, 5707–5716.
    [Google Scholar]
  116. Testa, D. & Banerjee, A. K. ( 1979; ). Initiation of RNA synthesis in vitro by vesicular stomatitis virus: role of ATP. J Biol Chem 254, 2053–2058.
    [Google Scholar]
  117. Tolley, K. P., Marriott, A. C., Simpson, A. & 9 other authors ( 1996; ). Identification of mutations contributing to the reduced virulence of a modified strain of respiratory syncytial virus. Vaccine 14, 1637–1646.[CrossRef]
    [Google Scholar]
  118. Tran, K. C., Collins, P. L. & Teng, M. N. ( 2004; ). Effects of altering the transcription termination signals of respiratory syncytial virus on viral gene expression and growth in vitro and in vivo. J Virol 78, 692–699.[CrossRef]
    [Google Scholar]
  119. Ulloa, L., Serra, R., Asenjo, A. & Villanueva, N. ( 1998; ). Interactions between cellular actin and human respiratory syncytial virus (HRSV). Virus Res 53, 13–25.[CrossRef]
    [Google Scholar]
  120. Vidal, S. & Kolakofsky, D. ( 1989; ). Modified model for the switch from Sendai virus transcription to replication. J Virol 63, 1951–1958.
    [Google Scholar]
  121. Villanueva, N., Hardy, R., Asenjo, A., Yu, Q. & Wertz, G. ( 2000; ). The bulk of the phosphorylation of human respiratory syncytial virus phosphoprotein is not essential but modulates viral RNA transcription and replication. J Gen Virol 81, 129–133.
    [Google Scholar]
  122. von Hippel, P. H. ( 2004; ). Completing the view of transcriptional regulation. Science 305, 350–352.[CrossRef]
    [Google Scholar]
  123. Vulliémoz, D. & Roux, L. ( 2001; ). “Rule of six”: how does the Sendai virus RNA polymerase keep count? J Virol 75, 4506–4518.[CrossRef]
    [Google Scholar]
  124. Vulliémoz, D. & Roux, L. ( 2002; ). Given the opportunity, the Sendai virus RNA-dependent RNA polymerase could as well enter its template internally. J Virol 76, 7987–7995.[CrossRef]
    [Google Scholar]
  125. Vulliémoz, D., Cordey, S., Mottet-Osman, G. & Roux, L. ( 2005; ). Nature of a paramyxovirus replication promoter influences a nearby transcription signal. J Gen Virol 86, 171–180.[CrossRef]
    [Google Scholar]
  126. Whelan, S. P. J. & Wertz, G. W. ( 1999; ). Regulation of RNA synthesis by the genomic termini of vesicular stomatitis virus: identification of distinct sequences essential for transcription but not replication. J Virol 73, 297–306.
    [Google Scholar]
  127. Whelan, S. P. J. & Wertz, G. W. ( 2002; ). Transcription and replication initiate at separate sites on the vesicular stomatitis virus genome. Proc Natl Acad Sci U S A 99, 9178–9183.[CrossRef]
    [Google Scholar]
  128. Whelan, S. P. J., Barr, J. N. & Wertz, G. W. ( 2000; ). Identification of a minimal size requirement for termination of vesicular stomatitis virus mRNA: implications for the mechanism of transcription. J Virol 74, 8268–8276.[CrossRef]
    [Google Scholar]
  129. Whelan, S. P. J., Barr, J. N. & Wertz, G. W. ( 2004; ). Transcription and replication of nonsegmented negative-strand RNA viruses. Curr Top Microbiol Immunol 283, 61–119.
    [Google Scholar]
  130. Young, B. A., Gruber, T. M. & Gross, C. A. ( 2002; ). Views of transcription initiation. Cell 109, 417–420.[CrossRef]
    [Google Scholar]
  131. Yu, Q., Hardy, R. W. & Wertz, G. W. ( 1995; ). Functional cDNA clones of the human respiratory syncytial (RS) virus N, P, and L proteins support replication of RS virus genomic RNA analogs and define minimal trans-acting requirements for RNA replication. J Virol 69, 2412–2419.
    [Google Scholar]
  132. Zorio, D. A. R. & Bentley, D. L. ( 2004; ). The link between mRNA processing and transcription: communication works both ways. Exp Cell Res 296, 91–97.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81786-0
Loading
/content/journal/jgv/10.1099/vir.0.81786-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error