1887

Abstract

Porcine circovirus type 2 (PCV2) is an important porcine pathogen that establishes persistent subclinical infections but may, on activation, contribute to the development of post-weaning multisystemic wasting syndrome (PMWS). This disease is characterized by weight loss, respiratory or digestive disorders and enlarged lymph nodes with lymphocyte depletion. The molecular mechanisms behind the development of the disease are completely unknown. In order to clarify functions of the different viral proteins and, if possible, to connect these new findings to molecular mechanisms behind the pathogenesis or the viral life cycle, a bacterial two-hybrid screening of a porcine expression library from PK-15A cells was conducted. Using viral proteins corresponding to ORFs 1, 2, 3 and 4 as bait, a number of interactions were identified and two of them were chosen for further characterization. GST pull-down assays confirmed that viral replicase (Rep) interacted with an intermediate filament protein, similar to human syncoilin, and with the transcriptional regulator c-. Furthermore, interactions of the viral proteins to each other revealed an interaction between PCV2 Rep and the capsid (Cap) protein and Cap to itself.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81785-0
2006-11-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/11/3215.html?itemId=/content/journal/jgv/10.1099/vir.0.81785-0&mimeType=html&fmt=ahah

References

  1. Allan G. M., Ellis J. A. 2000; Porcine circoviruses: a review. J Vet Diagn Invest 12:3–14 [CrossRef]
    [Google Scholar]
  2. Beadling C., Druey K. M., Richter G., Kehrl J. H., Smith K. A. 1999; Regulators of G protein signaling exhibit distinct patterns of gene expression and target G protein specificity in human lymphocytes. J Immunol 162:2677–2682
    [Google Scholar]
  3. Berg M., Stenlund A. 1997; Functional interactions between papillomavirus E1 and E2 proteins. J Virol 71:3853–3863
    [Google Scholar]
  4. Berg M., Ehrenborg C., Blomberg J., Pipkorn R., Berg A. L. 1998; Two domains of the Borna disease virus p40 protein are required for interaction with the p23 protein. J Gen Virol 79:2957–2963
    [Google Scholar]
  5. Berthebaud M., Riviere C., Jarrier P., Foudi A., Zhang Y., Compagno D., Galy A., Vainchenker W., Louache F. 2005; RGS16 is a negative regulator of SDF-1-CXCR4 signaling in megakaryocytes. Blood 106:2962–2968 [CrossRef]
    [Google Scholar]
  6. Briddon R. W., Watts J., Markham P. G., Stanley J. 1989; The coat protein of beet curly top virus is essential for infectivity. Virology 172:628–633 [CrossRef]
    [Google Scholar]
  7. Cheung A. K. 2003a; Comparative analysis of the transcriptional patterns of pathogenic and nonpathogenic porcine circoviruses. Virology 310:41–49 [CrossRef]
    [Google Scholar]
  8. Cheung A. K. 2003b; The essential and nonessential transcription units for viral protein synthesis and DNA replication of porcine circovirus type 2. Virology 313:452–459 [CrossRef]
    [Google Scholar]
  9. Cheung A. K., Bolin S. R. 2002; Kinetics of porcine circovirus type 2 replication. Arch Virol 147:43–58 [CrossRef]
    [Google Scholar]
  10. Clark E. G. 1997; Post-weaning multisystemic wasting syndrome. Proc Am Assoc Swine Pract 28:499–501
    [Google Scholar]
  11. Crowther R. A., Berriman J. A., Curran W. L., Allan G. M., Todd D. 2003; Comparison of the structures of three circoviruses: chicken anemia virus, porcine circovirus type 2, and beak and feather disease virus. J Virol 77:13036–13041 [CrossRef]
    [Google Scholar]
  12. Finsterbusch T., Steinfeldt T., Caliskan R., Mankertz A. 2005; Analysis of the subcellular localization of the proteins Rep, Rep′ and Cap of porcine circovirus type 1. Virology 343:36–46 [CrossRef]
    [Google Scholar]
  13. Gibbs M. J., Weiller G. F. 1999; Evidence that a plant virus switched hosts to infect a vertebrate and then recombined with a vertebrate-infecting virus. Proc Natl Acad Sci U S A 96:8022–8027 [CrossRef]
    [Google Scholar]
  14. Gilpin D. F., McCullough K., Meehan B. M. & 8 other authors 2003; In vitro studies on the infection and replication of porcine circovirus type 2 in cells of the porcine immune system. Vet Immunol Immunopathol 94:149–161 [CrossRef]
    [Google Scholar]
  15. Harding J. C., Clark E. G. 1997; Recognizing and diagnosing postweaning multisystemic wasting syndrome (PMWS). Swine Health Prod 5:201–204
    [Google Scholar]
  16. Hartig R., Shoeman R. L., Janetzko A., Tolstonog G., Traub P. 1998; DNA-mediated transport of the intermediate filament protein vimentin into the nucleus of cultured cells. J Cell Sci 111:3573–3584
    [Google Scholar]
  17. Kawabata K., Ujikawa M., Egawa T., Kawamoto H., Tachibana K., Iizasa H., Katsura Y., Kishimoto T., Nagasawa T. 1999; A cell-autonomous requirement for CXCR4 in long-term lymphoid and myeloid reconstitution. Proc Natl Acad Sci U S A 96:5663–5667 [CrossRef]
    [Google Scholar]
  18. Lapham A. S., Phillips E. S., Barton C. H. 2004; Transcriptional control of Nramp1: a paradigm for the repressive action of c- myc . Biochem Soc Trans 32:1084–1086 [CrossRef]
    [Google Scholar]
  19. Lippert E., Yowe D. L., Gonzalo J. A. & 9 other authors 2003; Role of regulator of G protein signaling 16 in inflammation-induced T lymphocyte migration and activation. J Immunol 171:1542–1555 [CrossRef]
    [Google Scholar]
  20. Liu Q., Willson P., Attoh-Poku S., Babiuk L. A. 2001; Bacterial expression of an immunologically reactive PCV2 ORF2 fusion protein. Protein Expr Purif 21:115–120 [CrossRef]
    [Google Scholar]
  21. Liu J., Chen I., Kwang J. 2005; Characterization of a previously unidentified viral protein in porcine circovirus type 2-infected cells and its role in virus-induced apoptosis. J Virol 79:8262–8274 [CrossRef]
    [Google Scholar]
  22. Mankertz A., Persson F., Mankertz J., Blaess G., Buhk H. J. 1997; Mapping and characterization of the origin of DNA replication of porcine circovirus. J Virol 71:2562–2566
    [Google Scholar]
  23. Mankertz A., Mueller B., Steinfeldt T., Schmitt C., Finsterbusch T. 2003; New reporter gene-based replication assay reveals exchangeability of replication factors of porcine circovirus types 1 and 2. J Virol 77:9885–9893 [CrossRef]
    [Google Scholar]
  24. Meehan B. M., McNeilly F., Todd D. & 7 other authors 1998; Characterization of novel circovirus DNAs associated with wasting syndromes in pigs. J Gen Virol 79:2171–2179
    [Google Scholar]
  25. Navratil J. S., Watkins S. C., Wisnieski J. J., Ahearn J. M. 2001; The globular heads of C1q specifically recognize surface blebs of apoptotic vascular endothelial cells. J Immunol 166:3231–3239 [CrossRef]
    [Google Scholar]
  26. Nawagitgul P., Morozov I., Bolin S. R., Harms P. A., Sorden S. D., Paul P. S. 2000; Open reading frame 2 of porcine circovirus type 2 encodes a major capsid protein. J Gen Virol 81:2281–2287
    [Google Scholar]
  27. Newey S. E., Howman E. V., Ponting C. P., Benson M. A., Nawrotzki R., Loh N. Y., Davies K. E., Blake D. J. 2001; Syncoilin, a novel member of the intermediate filament superfamily that interacts with alpha-dystrobrevin in skeletal muscle. J Biol Chem 276:6645–6655 [CrossRef]
    [Google Scholar]
  28. Padidam M., Beachy R. N., Fauquet C. M. 1999; A phage single-stranded DNA (ssDNA) binding protein complements ssDNA accumulation of a geminivirus and interferes with viral movement. J Virol 73:1609–1616
    [Google Scholar]
  29. Poon E., Howman E. V., Newey S. E., Davies K. E. 2002; Association of syncoilin and desmin: linking intermediate filament proteins to the dystrophin-associated protein complex. J Biol Chem 277:3433–3439 [CrossRef]
    [Google Scholar]
  30. Pringle C. R. 1999; Virus taxonomy –; 1999; The universal system of virus taxonomy, updated to include the new proposals ratified by the International Committee on Taxonomy of Viruses during 1998. Arch Virol 144:421–429 [CrossRef]
    [Google Scholar]
  31. Qin S., Ward B. M., Lazarowitz S. G. 1998; The bipartite geminivirus coat protein aids BR1 function in viral movement by affecting the accumulation of viral single-stranded DNA. J Virol 72:9247–9256
    [Google Scholar]
  32. Sambrook J., Russell D. 2001 Molecular Cloning: a Laboratory Manual , 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  33. Sarria A. J., Lieber J. G., Nordeen S. K., Evans R. M. 1994; The presence or absence of a vimentin-type intermediate filament network affects the shape of the nucleus in human SW-13 cells. J Cell Sci 107:1593–1607
    [Google Scholar]
  34. Smith G. A., Enquist L. W. 2002; Break ins and break outs: viral interactions with the cytoskeleton of mammalian cells. Annu Rev Cell Dev Biol 18:135–161 [CrossRef]
    [Google Scholar]
  35. Sodeik B., Ebersold M. W., Helenius A. 1997; Microtubule-mediated transport of incoming herpes simplex virus 1 capsids to the nucleus. J Cell Biol 136:1007–1021 [CrossRef]
    [Google Scholar]
  36. Steinfeldt T., Finsterbusch T., Mankertz A. 2001; Rep and Rep′ protein of porcine circovirus type 1 bind to the origin of replication in vitro. Virology 291:152–160 [CrossRef]
    [Google Scholar]
  37. Suikkanen S., Aaltonen T., Nevalainen M., Välilehto O., Lindholm L., Vuento M., Vihinen-Ranta M. 2003; Exploitation of microtubule cytoskeleton and dynein during parvoviral traffic towards the nucleus. J Virol 77:10270–10279 [CrossRef]
    [Google Scholar]
  38. Tischer I., Gelderblom H., Vettermann W., Koch M. A. 1982; A very small porcine virus with circular single-stranded DNA. Nature 295:64–66 [CrossRef]
    [Google Scholar]
  39. Todd D., Creelan J. L., McNulty M. S. 1991; Dot blot hybridization assay for chicken anemia agent using a cloned DNA probe. J Clin Microbiol 29:933–939
    [Google Scholar]
  40. Vincent I. E., Carrasco C. P., Herrmann B., Meehan B. M., Allan G. M., Summerfield A., McCullough K. C. 2003; Dendritic cells harbor infectious porcine circovirus type 2 in the absence of apparent cell modulation or replication of the virus. J Virol 77:13288–13300 [CrossRef]
    [Google Scholar]
  41. Xie Q., Suarez-Lopez P., Gutierrez C. 1995; Identification and analysis of a retinoblastoma binding motif in the replication protein of a plant DNA virus: requirement for efficient viral DNA replication. EMBO J 14:4073–4082
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81785-0
Loading
/content/journal/jgv/10.1099/vir.0.81785-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error