Skip to content
1887

Abstract

Herpesviruses characteristically persist in immune hosts as latent genomes, but to transmit infection they must reactivate and replicate lytically. The interaction between newly formed virions and pre-existing antibody is therefore likely to be a crucial determinant of viral fitness. Murine gammaherpesvirus-68 (MHV-68) behaves as a natural pathogen of conventional, inbred mice and consequently allows such interactions to be analysed experimentally in a relatively realistic setting. Here, monoclonal antibodies (mAbs) were derived from MHV-68-infected mice and all those recognizing infected-cell surfaces were tested for their capacity to neutralize MHV-68 virions. All of the neutralizing mAbs identified were specific for the viral glycoprotein H (gH)–gL heterodimer and required both gH and gL to reproduce their cognate epitopes. Based on antibody interference, there appeared to be two major neutralization epitopes on gH–gL. Analysis of a representative mAb indicated that it blocked infection at a post-binding step – either virion endocytosis or membrane fusion.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81760-0
2006-06-01
2025-01-21
Loading full text...

Full text loading...

References

  1. Adler H., Messerle M., Wagner M., Koszinowski U. H. 2000; Cloning and mutagenesis of the murine gammaherpesvirus 68 genome as an infectious bacterial artificial chromosome. J Virol 74:6964–6974 [CrossRef]
    [Google Scholar]
  2. Akula S. M., Pramod N. P., Wang F.-Z., Chandran B. 2002; Integrin α 3 β 1 (CD 49c/29) is a cellular receptor for Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) entry into the target cells. Cell 108:407–419 [CrossRef]
    [Google Scholar]
  3. Akula S. M., Naranatt P. P., Walia N.-S., Wang F.-Z., Fegley B., Chandran B. 2003; Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) infection of human fibroblast cells occurs through endocytosis. J Virol 77:7978–7990 [CrossRef]
    [Google Scholar]
  4. Balachandran N., Bacchetti S., Rawls W. E. 1982; Protection against lethal challenge of BALB/c mice by passive transfer of monoclonal antibodies to five glycoproteins of herpes simplex virus type 2. Infect Immun 37:1132–1137
    [Google Scholar]
  5. Boname J. M., Stevenson P. G. 2001; MHC class I ubiquitination by a viral PHD/LAP finger protein. Immunity 15:627–636 [CrossRef]
    [Google Scholar]
  6. Coleman H. M., de Lima B., Morton V., Stevenson P. G. 2003; Murine gammaherpesvirus 68 lacking thymidine kinase shows severe attenuation of lytic cycle replication in vivo but still establishes latency. J Virol 77:2410–2417 [CrossRef]
    [Google Scholar]
  7. de Lima B. D., May J. S., Stevenson P. G. 2004; Murine gammaherpesvirus 68 lacking gp150 shows defective virion release but establishes normal latency in vivo. J Virol 78:5103–5112 [CrossRef]
    [Google Scholar]
  8. Fenner F., McAuslan B. R., Mims C. A., Sambrook J., White D. O. 1974 The Biology of Animal Viruses , 2nd edn. London: Academic Press;
    [Google Scholar]
  9. Fuller A. O., Santos R. E., Spear P. G. 1989; Neutralizing antibodies specific for glycoprotein H of herpes simplex virus permit viral attachment to cells but prevent penetration. J Virol 63:3435–3443
    [Google Scholar]
  10. Galfrè G., Milstein C. 1981; Preparation of monoclonal antibodies: strategies and procedures. Methods Enzymol 73:3–46
    [Google Scholar]
  11. Gangappa S., Kapadia S. B., Speck S. H., Virgin H. W. IV 2002; Antibody to a lytic cycle viral protein decreases gammaherpesvirus latency in B-cell-deficient mice. J Virol 76:11460–11468 [CrossRef]
    [Google Scholar]
  12. Gompels U. A., Minson A. C. 1989; Antigenic properties and cellular localization of herpes simplex virus glycoprotein H synthesized in a mammalian cell expression system. J Virol 63:4744–4755
    [Google Scholar]
  13. Huber M. T., Compton T. 1998; The human cytomegalovirus UL74 gene encodes the third component of the glycoprotein H-glycoprotein L-containing envelope complex. J Virol 72:8191–8197
    [Google Scholar]
  14. Hutchinson L., Browne H., Wargent V., Davis-Poynter N., Primorac S., Goldsmith K., Minson A. C., Johnson D. C. 1992; A novel herpes simplex virus glycoprotein, gL, forms a complex with glycoprotein H (gH) and affects normal folding and surface expression of gH. J Virol 66:2240–2250
    [Google Scholar]
  15. Janz A., Oezel M., Kurzeder C., Mautner J., Pich D., Kost M., Hammerschmidt W., Delecluse H.-J. 2000; Infectious Epstein-Barr virus lacking major glycoprotein BLLF1 (gp350/220) demonstrates the existence of additional viral ligands. J Virol 74:10142–10152 [CrossRef]
    [Google Scholar]
  16. Kozuch O., Reichel M., Lesso J., Remenova A., Labuda M., Lysy J., Mistrikova J. 1993; Further isolation of murine herpesviruses from small mammals in southwestern Slovakia. Acta Virol 37:101–105
    [Google Scholar]
  17. Lake C. M., Hutt-Fletcher L. M. 2000; Epstein-Barr virus that lacks glycoprotein gN is impaired in assembly and infection. J Virol 74:11162–11172 [CrossRef]
    [Google Scholar]
  18. Liu D. X., Gompels U. A., Foa-Tomasi L., Campadelli-Fiume G. 1993; Human herpesvirus-6 glycoprotein H and L homologs are components of the gp100 complex and the gH external domain is the target for neutralizing monoclonal antibodies. Virology 197:12–22 [CrossRef]
    [Google Scholar]
  19. Lomonte P., Filée P., Lyaku J. R., Bublot M., Pastoret P.-P., Thiry E. 1997; Analysis of the biochemical properties of, and complex formation between, glycoproteins H and L of the γ 2 herpesvirus bovine herpesvirus-4. J Gen Virol 78:2015–2023
    [Google Scholar]
  20. Lopes F. B., Colaco S., May J. S., Stevenson P. G. 2004; Characterization of the murine gammaherpesvirus 68 glycoprotein B. J Virol 78:13370–13375 [CrossRef]
    [Google Scholar]
  21. May J. S., Colaco S., Stevenson P. G. 2005a; Glycoprotein M is an essential lytic replication protein of the murine gammaherpesvirus 68. J Virol 79:3459–3467 [CrossRef]
    [Google Scholar]
  22. May J. S., Coleman H. M., Boname J. M., Stevenson P. G. 2005b; Murine gammaherpesvirus-68 ORF28 encodes a non-essential virion glycoprotein. J Gen Virol 86:919–928 [CrossRef]
    [Google Scholar]
  23. May J. S., Walker J., Colaco S., Stevenson P. G. 2005c; The murine gammaherpesvirus 68 ORF27 gene product contributes to intercellular viral spread. J Virol 79:5059–5068 [CrossRef]
    [Google Scholar]
  24. May J. S., de Lima B. D., Colaco S., Stevenson P. G. 2005d; Intercellular gamma-herpesvirus dissemination involves co-ordinated intracellular membrane protein transport. Traffic 6:780–793 [CrossRef]
    [Google Scholar]
  25. Miller N., Hutt-Fletcher L. M. 1988; A monoclonal antibody to glycoprotein gp85 inhibits fusion but not attachment of Epstein-Barr virus. J Virol 62:2366–2372
    [Google Scholar]
  26. Miller N., Hutt-Fletcher L. M. 1992; Epstein-Barr virus enters B cells and epithelial cells by different routes. J Virol 66:3409–3414
    [Google Scholar]
  27. Molesworth S. J., Lake C. M., Borza C. M., Turk S. M., Hutt-Fletcher L. M. 2000; Epstein-Barr virus gH is essential for penetration of B cells but also plays a role in attachment of virus to epithelial cells. J Virol 74:6324–6332 [CrossRef]
    [Google Scholar]
  28. Moorman N. J., Lin C. Y., Speck S. H. 2004; Identification of candidate gammaherpesvirus 68 genes required for virus replication by signature-tagged transposon mutagenesis. J Virol 78:10282–10290 [CrossRef]
    [Google Scholar]
  29. Mori Y., Akkapaiboon P., Yonemoto S. & 7 other authors 2004; Discovery of a second form of tripartite complex containing gH-gL of human herpesvirus 6 and observations on CD46. J Virol 78:4609–4616 [CrossRef]
    [Google Scholar]
  30. Naranatt P. P., Akula S. M., Chandran B. 2002; Characterization of γ 2-human herpesvirus-8 glycoproteins gH and gL. Arch Virol 147:1349–1370 [CrossRef]
    [Google Scholar]
  31. Para M. F., Parish M. L., Noble A. G., Spear P. G. 1985; Potent neutralizing activity associated with anti-glycoprotein D specificity among monoclonal antibodies selected for binding to herpes simplex virions. J Virol 55:483–488
    [Google Scholar]
  32. Parry C., Bell S., Minson T., Browne H. 2005; Herpes simplex virus type 1 glycoprotein H binds to α v β 3 integrins. J Gen Virol 86:7–10 [CrossRef]
    [Google Scholar]
  33. Song M. J., Hwang S., Wong W. H., Wu T.-T., Lee S., Liao H.-I., Sun R. 2005; Identification of viral genes essential for replication of murine γ -herpesvirus 68 using signature-tagged mutagenesis. Proc Natl Acad Sci U S A 102:3805–3810 [CrossRef]
    [Google Scholar]
  34. Speck S. H., Virgin H. W. IV 1999; Host and viral genetics of chronic infection: a mouse model of gamma-herpesvirus pathogenesis. Curr Opin Microbiol 2:403–409 [CrossRef]
    [Google Scholar]
  35. Stevenson P. G. 2004; Immune evasion by gamma-herpesviruses. Curr Opin Immunol 16:456–462 [CrossRef]
    [Google Scholar]
  36. Stevenson P. G., Efstathiou S. 2005; Immune mechanisms in murine gammaherpesvirus-68 infection. Viral Immunol 18:445–456 [CrossRef]
    [Google Scholar]
  37. Stevenson P. G., Efstathiou S., Doherty P. C., Lehner P. J. 2000; Inhibition of MHC class I-restricted antigen presentation by γ 2-herpesviruses. Proc Natl Acad Sci U S A 97:8455–8460 [CrossRef]
    [Google Scholar]
  38. Stevenson P. G., May J. S., Smith X. G., Marques S., Adler H., Koszinowski U. H., Simas J. P., Efstathiou S. 2002; K3-mediated evasion of CD8+ T cells aids amplification of a latent γ -herpesvirus. Nat Immunol 3:733–740
    [Google Scholar]
  39. Stewart J. P., Micali N., Usherwood E. J., Bonina L., Nash A. A. 1999; Murine gamma-herpesvirus 68 glycoprotein 150 protects against virus-induced mononucleosis: a model system for gamma-herpesvirus vaccination. Vaccine 17:152–157 [CrossRef]
    [Google Scholar]
  40. Sunil-Chandra N. P., Efstathiou S., Arno J., Nash A. A. 1992; Virological and pathological features of mice infected with murine gammaherpesvirus 68. J Gen Virol 73:2347–2356 [CrossRef]
    [Google Scholar]
  41. Thorley-Lawson D. A., Poodry C. A. 1982; Identification and isolation of the main component (gp350-gp220) of Epstein-Barr virus responsible for generating neutralizing antibodies in vivo. J Virol 43:730–736
    [Google Scholar]
  42. Urban M., Klein M., Britt W. J., Haßfurther E., Mach M. 1996; Glycoprotein H of human cytomegalovirus is a major antigen for the neutralizing humoral immune response. J Gen Virol 77:1537–1547 [CrossRef]
    [Google Scholar]
  43. Wang X., Kenyon W. J., Li Q., Müllberg J., Hutt-Fletcher L. M. 1998; Epstein-Barr virus uses different complexes of glycoproteins gH and gL to infect B lymphocytes and epithelial cells. J Virol 72:5552–5558
    [Google Scholar]
  44. Yaswen L. R., Stephens E. B., Davenport L. C., Hutt-Fletcher L. M. 1993; Epstein-Barr virus glycoprotein gp85 associates with the BKRF2 gene product and is incompletely processed as a recombinant protein. Virology 195:387–396 [CrossRef]
    [Google Scholar]
  45. Yewdell J. W., Hill A. B. 2002; Viral interference with antigen presentation. Nat Immunol 3:1019–1025 [CrossRef]
    [Google Scholar]
/content/journal/jgv/10.1099/vir.0.81760-0
Loading
/content/journal/jgv/10.1099/vir.0.81760-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error