1887

Abstract

Herpesviruses characteristically persist in immune hosts as latent genomes, but to transmit infection they must reactivate and replicate lytically. The interaction between newly formed virions and pre-existing antibody is therefore likely to be a crucial determinant of viral fitness. Murine gammaherpesvirus-68 (MHV-68) behaves as a natural pathogen of conventional, inbred mice and consequently allows such interactions to be analysed experimentally in a relatively realistic setting. Here, monoclonal antibodies (mAbs) were derived from MHV-68-infected mice and all those recognizing infected-cell surfaces were tested for their capacity to neutralize MHV-68 virions. All of the neutralizing mAbs identified were specific for the viral glycoprotein H (gH)–gL heterodimer and required both gH and gL to reproduce their cognate epitopes. Based on antibody interference, there appeared to be two major neutralization epitopes on gH–gL. Analysis of a representative mAb indicated that it blocked infection at a post-binding step – either virion endocytosis or membrane fusion.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81760-0
2006-06-01
2021-10-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/6/1465.html?itemId=/content/journal/jgv/10.1099/vir.0.81760-0&mimeType=html&fmt=ahah

References

  1. Adler H., Messerle M., Wagner M., Koszinowski U. H. 2000; Cloning and mutagenesis of the murine gammaherpesvirus 68 genome as an infectious bacterial artificial chromosome. J Virol 74:6964–6974 [CrossRef]
    [Google Scholar]
  2. Akula S. M., Pramod N. P., Wang F.-Z., Chandran B. 2002; Integrin α 3 β 1 (CD 49c/29) is a cellular receptor for Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) entry into the target cells. Cell 108:407–419 [CrossRef]
    [Google Scholar]
  3. Akula S. M., Naranatt P. P., Walia N.-S., Wang F.-Z., Fegley B., Chandran B. 2003; Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) infection of human fibroblast cells occurs through endocytosis. J Virol 77:7978–7990 [CrossRef]
    [Google Scholar]
  4. Balachandran N., Bacchetti S., Rawls W. E. 1982; Protection against lethal challenge of BALB/c mice by passive transfer of monoclonal antibodies to five glycoproteins of herpes simplex virus type 2. Infect Immun 37:1132–1137
    [Google Scholar]
  5. Boname J. M., Stevenson P. G. 2001; MHC class I ubiquitination by a viral PHD/LAP finger protein. Immunity 15:627–636 [CrossRef]
    [Google Scholar]
  6. Coleman H. M., de Lima B., Morton V., Stevenson P. G. 2003; Murine gammaherpesvirus 68 lacking thymidine kinase shows severe attenuation of lytic cycle replication in vivo but still establishes latency. J Virol 77:2410–2417 [CrossRef]
    [Google Scholar]
  7. de Lima B. D., May J. S., Stevenson P. G. 2004; Murine gammaherpesvirus 68 lacking gp150 shows defective virion release but establishes normal latency in vivo. J Virol 78:5103–5112 [CrossRef]
    [Google Scholar]
  8. Fenner F., McAuslan B. R., Mims C. A., Sambrook J., White D. O. 1974 The Biology of Animal Viruses , 2nd edn. London: Academic Press;
    [Google Scholar]
  9. Fuller A. O., Santos R. E., Spear P. G. 1989; Neutralizing antibodies specific for glycoprotein H of herpes simplex virus permit viral attachment to cells but prevent penetration. J Virol 63:3435–3443
    [Google Scholar]
  10. Galfrè G., Milstein C. 1981; Preparation of monoclonal antibodies: strategies and procedures. Methods Enzymol 73:3–46
    [Google Scholar]
  11. Gangappa S., Kapadia S. B., Speck S. H., Virgin H. W. IV 2002; Antibody to a lytic cycle viral protein decreases gammaherpesvirus latency in B-cell-deficient mice. J Virol 76:11460–11468 [CrossRef]
    [Google Scholar]
  12. Gompels U. A., Minson A. C. 1989; Antigenic properties and cellular localization of herpes simplex virus glycoprotein H synthesized in a mammalian cell expression system. J Virol 63:4744–4755
    [Google Scholar]
  13. Huber M. T., Compton T. 1998; The human cytomegalovirus UL74 gene encodes the third component of the glycoprotein H-glycoprotein L-containing envelope complex. J Virol 72:8191–8197
    [Google Scholar]
  14. Hutchinson L., Browne H., Wargent V., Davis-Poynter N., Primorac S., Goldsmith K., Minson A. C., Johnson D. C. 1992; A novel herpes simplex virus glycoprotein, gL, forms a complex with glycoprotein H (gH) and affects normal folding and surface expression of gH. J Virol 66:2240–2250
    [Google Scholar]
  15. Janz A., Oezel M., Kurzeder C., Mautner J., Pich D., Kost M., Hammerschmidt W., Delecluse H.-J. 2000; Infectious Epstein-Barr virus lacking major glycoprotein BLLF1 (gp350/220) demonstrates the existence of additional viral ligands. J Virol 74:10142–10152 [CrossRef]
    [Google Scholar]
  16. Kozuch O., Reichel M., Lesso J., Remenova A., Labuda M., Lysy J., Mistrikova J. 1993; Further isolation of murine herpesviruses from small mammals in southwestern Slovakia. Acta Virol 37:101–105
    [Google Scholar]
  17. Lake C. M., Hutt-Fletcher L. M. 2000; Epstein-Barr virus that lacks glycoprotein gN is impaired in assembly and infection. J Virol 74:11162–11172 [CrossRef]
    [Google Scholar]
  18. Liu D. X., Gompels U. A., Foa-Tomasi L., Campadelli-Fiume G. 1993; Human herpesvirus-6 glycoprotein H and L homologs are components of the gp100 complex and the gH external domain is the target for neutralizing monoclonal antibodies. Virology 197:12–22 [CrossRef]
    [Google Scholar]
  19. Lomonte P., Filée P., Lyaku J. R., Bublot M., Pastoret P.-P., Thiry E. 1997; Analysis of the biochemical properties of, and complex formation between, glycoproteins H and L of the γ 2 herpesvirus bovine herpesvirus-4. J Gen Virol 78:2015–2023
    [Google Scholar]
  20. Lopes F. B., Colaco S., May J. S., Stevenson P. G. 2004; Characterization of the murine gammaherpesvirus 68 glycoprotein B. J Virol 78:13370–13375 [CrossRef]
    [Google Scholar]
  21. May J. S., Colaco S., Stevenson P. G. 2005a; Glycoprotein M is an essential lytic replication protein of the murine gammaherpesvirus 68. J Virol 79:3459–3467 [CrossRef]
    [Google Scholar]
  22. May J. S., Coleman H. M., Boname J. M., Stevenson P. G. 2005b; Murine gammaherpesvirus-68 ORF28 encodes a non-essential virion glycoprotein. J Gen Virol 86:919–928 [CrossRef]
    [Google Scholar]
  23. May J. S., Walker J., Colaco S., Stevenson P. G. 2005c; The murine gammaherpesvirus 68 ORF27 gene product contributes to intercellular viral spread. J Virol 79:5059–5068 [CrossRef]
    [Google Scholar]
  24. May J. S., de Lima B. D., Colaco S., Stevenson P. G. 2005d; Intercellular gamma-herpesvirus dissemination involves co-ordinated intracellular membrane protein transport. Traffic 6:780–793 [CrossRef]
    [Google Scholar]
  25. Miller N., Hutt-Fletcher L. M. 1988; A monoclonal antibody to glycoprotein gp85 inhibits fusion but not attachment of Epstein-Barr virus. J Virol 62:2366–2372
    [Google Scholar]
  26. Miller N., Hutt-Fletcher L. M. 1992; Epstein-Barr virus enters B cells and epithelial cells by different routes. J Virol 66:3409–3414
    [Google Scholar]
  27. Molesworth S. J., Lake C. M., Borza C. M., Turk S. M., Hutt-Fletcher L. M. 2000; Epstein-Barr virus gH is essential for penetration of B cells but also plays a role in attachment of virus to epithelial cells. J Virol 74:6324–6332 [CrossRef]
    [Google Scholar]
  28. Moorman N. J., Lin C. Y., Speck S. H. 2004; Identification of candidate gammaherpesvirus 68 genes required for virus replication by signature-tagged transposon mutagenesis. J Virol 78:10282–10290 [CrossRef]
    [Google Scholar]
  29. Mori Y., Akkapaiboon P., Yonemoto S. & 7 other authors 2004; Discovery of a second form of tripartite complex containing gH-gL of human herpesvirus 6 and observations on CD46. J Virol 78:4609–4616 [CrossRef]
    [Google Scholar]
  30. Naranatt P. P., Akula S. M., Chandran B. 2002; Characterization of γ 2-human herpesvirus-8 glycoproteins gH and gL. Arch Virol 147:1349–1370 [CrossRef]
    [Google Scholar]
  31. Para M. F., Parish M. L., Noble A. G., Spear P. G. 1985; Potent neutralizing activity associated with anti-glycoprotein D specificity among monoclonal antibodies selected for binding to herpes simplex virions. J Virol 55:483–488
    [Google Scholar]
  32. Parry C., Bell S., Minson T., Browne H. 2005; Herpes simplex virus type 1 glycoprotein H binds to α v β 3 integrins. J Gen Virol 86:7–10 [CrossRef]
    [Google Scholar]
  33. Song M. J., Hwang S., Wong W. H., Wu T.-T., Lee S., Liao H.-I., Sun R. 2005; Identification of viral genes essential for replication of murine γ -herpesvirus 68 using signature-tagged mutagenesis. Proc Natl Acad Sci U S A 102:3805–3810 [CrossRef]
    [Google Scholar]
  34. Speck S. H., Virgin H. W. IV 1999; Host and viral genetics of chronic infection: a mouse model of gamma-herpesvirus pathogenesis. Curr Opin Microbiol 2:403–409 [CrossRef]
    [Google Scholar]
  35. Stevenson P. G. 2004; Immune evasion by gamma-herpesviruses. Curr Opin Immunol 16:456–462 [CrossRef]
    [Google Scholar]
  36. Stevenson P. G., Efstathiou S. 2005; Immune mechanisms in murine gammaherpesvirus-68 infection. Viral Immunol 18:445–456 [CrossRef]
    [Google Scholar]
  37. Stevenson P. G., Efstathiou S., Doherty P. C., Lehner P. J. 2000; Inhibition of MHC class I-restricted antigen presentation by γ 2-herpesviruses. Proc Natl Acad Sci U S A 97:8455–8460 [CrossRef]
    [Google Scholar]
  38. Stevenson P. G., May J. S., Smith X. G., Marques S., Adler H., Koszinowski U. H., Simas J. P., Efstathiou S. 2002; K3-mediated evasion of CD8+ T cells aids amplification of a latent γ -herpesvirus. Nat Immunol 3:733–740
    [Google Scholar]
  39. Stewart J. P., Micali N., Usherwood E. J., Bonina L., Nash A. A. 1999; Murine gamma-herpesvirus 68 glycoprotein 150 protects against virus-induced mononucleosis: a model system for gamma-herpesvirus vaccination. Vaccine 17:152–157 [CrossRef]
    [Google Scholar]
  40. Sunil-Chandra N. P., Efstathiou S., Arno J., Nash A. A. 1992; Virological and pathological features of mice infected with murine gammaherpesvirus 68. J Gen Virol 73:2347–2356 [CrossRef]
    [Google Scholar]
  41. Thorley-Lawson D. A., Poodry C. A. 1982; Identification and isolation of the main component (gp350-gp220) of Epstein-Barr virus responsible for generating neutralizing antibodies in vivo. J Virol 43:730–736
    [Google Scholar]
  42. Urban M., Klein M., Britt W. J., Haßfurther E., Mach M. 1996; Glycoprotein H of human cytomegalovirus is a major antigen for the neutralizing humoral immune response. J Gen Virol 77:1537–1547 [CrossRef]
    [Google Scholar]
  43. Wang X., Kenyon W. J., Li Q., Müllberg J., Hutt-Fletcher L. M. 1998; Epstein-Barr virus uses different complexes of glycoproteins gH and gL to infect B lymphocytes and epithelial cells. J Virol 72:5552–5558
    [Google Scholar]
  44. Yaswen L. R., Stephens E. B., Davenport L. C., Hutt-Fletcher L. M. 1993; Epstein-Barr virus glycoprotein gp85 associates with the BKRF2 gene product and is incompletely processed as a recombinant protein. Virology 195:387–396 [CrossRef]
    [Google Scholar]
  45. Yewdell J. W., Hill A. B. 2002; Viral interference with antigen presentation. Nat Immunol 3:1019–1025 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81760-0
Loading
/content/journal/jgv/10.1099/vir.0.81760-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error