1887

Abstract

Herpesviruses characteristically persist in immune hosts as latent genomes, but to transmit infection they must reactivate and replicate lytically. The interaction between newly formed virions and pre-existing antibody is therefore likely to be a crucial determinant of viral fitness. Murine gammaherpesvirus-68 (MHV-68) behaves as a natural pathogen of conventional, inbred mice and consequently allows such interactions to be analysed experimentally in a relatively realistic setting. Here, monoclonal antibodies (mAbs) were derived from MHV-68-infected mice and all those recognizing infected-cell surfaces were tested for their capacity to neutralize MHV-68 virions. All of the neutralizing mAbs identified were specific for the viral glycoprotein H (gH)–gL heterodimer and required both gH and gL to reproduce their cognate epitopes. Based on antibody interference, there appeared to be two major neutralization epitopes on gH–gL. Analysis of a representative mAb indicated that it blocked infection at a post-binding step – either virion endocytosis or membrane fusion.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81760-0
2006-06-01
2019-12-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/6/1465.html?itemId=/content/journal/jgv/10.1099/vir.0.81760-0&mimeType=html&fmt=ahah

References

  1. Adler, H., Messerle, M., Wagner, M. & Koszinowski, U. H. ( 2000; ). Cloning and mutagenesis of the murine gammaherpesvirus 68 genome as an infectious bacterial artificial chromosome. J Virol 74, 6964–6974.[CrossRef]
    [Google Scholar]
  2. Akula, S. M., Pramod, N. P., Wang, F.-Z. & Chandran, B. ( 2002; ). Integrin α3β1 (CD 49c/29) is a cellular receptor for Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) entry into the target cells. Cell 108, 407–419.[CrossRef]
    [Google Scholar]
  3. Akula, S. M., Naranatt, P. P., Walia, N.-S., Wang, F.-Z., Fegley, B. & Chandran, B. ( 2003; ). Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) infection of human fibroblast cells occurs through endocytosis. J Virol 77, 7978–7990.[CrossRef]
    [Google Scholar]
  4. Balachandran, N., Bacchetti, S. & Rawls, W. E. ( 1982; ). Protection against lethal challenge of BALB/c mice by passive transfer of monoclonal antibodies to five glycoproteins of herpes simplex virus type 2. Infect Immun 37, 1132–1137.
    [Google Scholar]
  5. Boname, J. M. & Stevenson, P. G. ( 2001; ). MHC class I ubiquitination by a viral PHD/LAP finger protein. Immunity 15, 627–636.[CrossRef]
    [Google Scholar]
  6. Coleman, H. M., de Lima, B., Morton, V. & Stevenson, P. G. ( 2003; ). Murine gammaherpesvirus 68 lacking thymidine kinase shows severe attenuation of lytic cycle replication in vivo but still establishes latency. J Virol 77, 2410–2417.[CrossRef]
    [Google Scholar]
  7. de Lima, B. D., May, J. S. & Stevenson, P. G. ( 2004; ). Murine gammaherpesvirus 68 lacking gp150 shows defective virion release but establishes normal latency in vivo. J Virol 78, 5103–5112.[CrossRef]
    [Google Scholar]
  8. Fenner, F., McAuslan, B. R., Mims, C. A., Sambrook, J. & White, D. O. ( 1974; ). The Biology of Animal Viruses, 2nd edn. London: Academic Press.
  9. Fuller, A. O., Santos, R. E. & Spear, P. G. ( 1989; ). Neutralizing antibodies specific for glycoprotein H of herpes simplex virus permit viral attachment to cells but prevent penetration. J Virol 63, 3435–3443.
    [Google Scholar]
  10. Galfrè, G. & Milstein, C. ( 1981; ). Preparation of monoclonal antibodies: strategies and procedures. Methods Enzymol 73, 3–46.
    [Google Scholar]
  11. Gangappa, S., Kapadia, S. B., Speck, S. H. & Virgin, H. W., IV ( 2002; ). Antibody to a lytic cycle viral protein decreases gammaherpesvirus latency in B-cell-deficient mice. J Virol 76, 11460–11468.[CrossRef]
    [Google Scholar]
  12. Gompels, U. A. & Minson, A. C. ( 1989; ). Antigenic properties and cellular localization of herpes simplex virus glycoprotein H synthesized in a mammalian cell expression system. J Virol 63, 4744–4755.
    [Google Scholar]
  13. Huber, M. T. & Compton, T. ( 1998; ). The human cytomegalovirus UL74 gene encodes the third component of the glycoprotein H-glycoprotein L-containing envelope complex. J Virol 72, 8191–8197.
    [Google Scholar]
  14. Hutchinson, L., Browne, H., Wargent, V., Davis-Poynter, N., Primorac, S., Goldsmith, K., Minson, A. C. & Johnson, D. C. ( 1992; ). A novel herpes simplex virus glycoprotein, gL, forms a complex with glycoprotein H (gH) and affects normal folding and surface expression of gH. J Virol 66, 2240–2250.
    [Google Scholar]
  15. Janz, A., Oezel, M., Kurzeder, C., Mautner, J., Pich, D., Kost, M., Hammerschmidt, W. & Delecluse, H.-J. ( 2000; ). Infectious Epstein-Barr virus lacking major glycoprotein BLLF1 (gp350/220) demonstrates the existence of additional viral ligands. J Virol 74, 10142–10152.[CrossRef]
    [Google Scholar]
  16. Kozuch, O., Reichel, M., Lesso, J., Remenova, A., Labuda, M., Lysy, J. & Mistrikova, J. ( 1993; ). Further isolation of murine herpesviruses from small mammals in southwestern Slovakia. Acta Virol 37, 101–105.
    [Google Scholar]
  17. Lake, C. M. & Hutt-Fletcher, L. M. ( 2000; ). Epstein-Barr virus that lacks glycoprotein gN is impaired in assembly and infection. J Virol 74, 11162–11172.[CrossRef]
    [Google Scholar]
  18. Liu, D. X., Gompels, U. A., Foa-Tomasi, L. & Campadelli-Fiume, G. ( 1993; ). Human herpesvirus-6 glycoprotein H and L homologs are components of the gp100 complex and the gH external domain is the target for neutralizing monoclonal antibodies. Virology 197, 12–22.[CrossRef]
    [Google Scholar]
  19. Lomonte, P., Filée, P., Lyaku, J. R., Bublot, M., Pastoret, P.-P. & Thiry, E. ( 1997; ). Analysis of the biochemical properties of, and complex formation between, glycoproteins H and L of the γ 2 herpesvirus bovine herpesvirus-4. J Gen Virol 78, 2015–2023.
    [Google Scholar]
  20. Lopes, F. B., Colaco, S., May, J. S. & Stevenson, P. G. ( 2004; ). Characterization of the murine gammaherpesvirus 68 glycoprotein B. J Virol 78, 13370–13375.[CrossRef]
    [Google Scholar]
  21. May, J. S., Colaco, S. & Stevenson, P. G. ( 2005a; ). Glycoprotein M is an essential lytic replication protein of the murine gammaherpesvirus 68. J Virol 79, 3459–3467.[CrossRef]
    [Google Scholar]
  22. May, J. S., Coleman, H. M., Boname, J. M. & Stevenson, P. G. ( 2005b; ). Murine gammaherpesvirus-68 ORF28 encodes a non-essential virion glycoprotein. J Gen Virol 86, 919–928.[CrossRef]
    [Google Scholar]
  23. May, J. S., Walker, J., Colaco, S. & Stevenson, P. G. ( 2005c; ). The murine gammaherpesvirus 68 ORF27 gene product contributes to intercellular viral spread. J Virol 79, 5059–5068.[CrossRef]
    [Google Scholar]
  24. May, J. S., de Lima, B. D., Colaco, S. & Stevenson, P. G. ( 2005d; ). Intercellular gamma-herpesvirus dissemination involves co-ordinated intracellular membrane protein transport. Traffic 6, 780–793.[CrossRef]
    [Google Scholar]
  25. Miller, N. & Hutt-Fletcher, L. M. ( 1988; ). A monoclonal antibody to glycoprotein gp85 inhibits fusion but not attachment of Epstein-Barr virus. J Virol 62, 2366–2372.
    [Google Scholar]
  26. Miller, N. & Hutt-Fletcher, L. M. ( 1992; ). Epstein-Barr virus enters B cells and epithelial cells by different routes. J Virol 66, 3409–3414.
    [Google Scholar]
  27. Molesworth, S. J., Lake, C. M., Borza, C. M., Turk, S. M. & Hutt-Fletcher, L. M. ( 2000; ). Epstein-Barr virus gH is essential for penetration of B cells but also plays a role in attachment of virus to epithelial cells. J Virol 74, 6324–6332.[CrossRef]
    [Google Scholar]
  28. Moorman, N. J., Lin, C. Y. & Speck, S. H. ( 2004; ). Identification of candidate gammaherpesvirus 68 genes required for virus replication by signature-tagged transposon mutagenesis. J Virol 78, 10282–10290.[CrossRef]
    [Google Scholar]
  29. Mori, Y., Akkapaiboon, P., Yonemoto, S. & 7 other authors ( 2004; ). Discovery of a second form of tripartite complex containing gH-gL of human herpesvirus 6 and observations on CD46. J Virol 78, 4609–4616.[CrossRef]
    [Google Scholar]
  30. Naranatt, P. P., Akula, S. M. & Chandran, B. ( 2002; ). Characterization of γ2-human herpesvirus-8 glycoproteins gH and gL. Arch Virol 147, 1349–1370.[CrossRef]
    [Google Scholar]
  31. Para, M. F., Parish, M. L., Noble, A. G. & Spear, P. G. ( 1985; ). Potent neutralizing activity associated with anti-glycoprotein D specificity among monoclonal antibodies selected for binding to herpes simplex virions. J Virol 55, 483–488.
    [Google Scholar]
  32. Parry, C., Bell, S., Minson, T. & Browne, H. ( 2005; ). Herpes simplex virus type 1 glycoprotein H binds to αvβ3 integrins. J Gen Virol 86, 7–10.[CrossRef]
    [Google Scholar]
  33. Song, M. J., Hwang, S., Wong, W. H., Wu, T.-T., Lee, S., Liao, H.-I. & Sun, R. ( 2005; ). Identification of viral genes essential for replication of murine γ-herpesvirus 68 using signature-tagged mutagenesis. Proc Natl Acad Sci U S A 102, 3805–3810.[CrossRef]
    [Google Scholar]
  34. Speck, S. H. & Virgin, H. W., IV ( 1999; ). Host and viral genetics of chronic infection: a mouse model of gamma-herpesvirus pathogenesis. Curr Opin Microbiol 2, 403–409.[CrossRef]
    [Google Scholar]
  35. Stevenson, P. G. ( 2004; ). Immune evasion by gamma-herpesviruses. Curr Opin Immunol 16, 456–462.[CrossRef]
    [Google Scholar]
  36. Stevenson, P. G. & Efstathiou, S. ( 2005; ). Immune mechanisms in murine gammaherpesvirus-68 infection. Viral Immunol 18, 445–456.[CrossRef]
    [Google Scholar]
  37. Stevenson, P. G., Efstathiou, S., Doherty, P. C. & Lehner, P. J. ( 2000; ). Inhibition of MHC class I-restricted antigen presentation by γ2-herpesviruses. Proc Natl Acad Sci U S A 97, 8455–8460.[CrossRef]
    [Google Scholar]
  38. Stevenson, P. G., May, J. S., Smith, X. G., Marques, S., Adler, H., Koszinowski, U. H., Simas, J. P. & Efstathiou, S. ( 2002; ). K3-mediated evasion of CD8+ T cells aids amplification of a latent γ-herpesvirus. Nat Immunol 3, 733–740.
    [Google Scholar]
  39. Stewart, J. P., Micali, N., Usherwood, E. J., Bonina, L. & Nash, A. A. ( 1999; ). Murine gamma-herpesvirus 68 glycoprotein 150 protects against virus-induced mononucleosis: a model system for gamma-herpesvirus vaccination. Vaccine 17, 152–157.[CrossRef]
    [Google Scholar]
  40. Sunil-Chandra, N. P., Efstathiou, S., Arno, J. & Nash, A. A. ( 1992; ). Virological and pathological features of mice infected with murine gammaherpesvirus 68. J Gen Virol 73, 2347–2356.[CrossRef]
    [Google Scholar]
  41. Thorley-Lawson, D. A. & Poodry, C. A. ( 1982; ). Identification and isolation of the main component (gp350-gp220) of Epstein-Barr virus responsible for generating neutralizing antibodies in vivo. J Virol 43, 730–736.
    [Google Scholar]
  42. Urban, M., Klein, M., Britt, W. J., Haßfurther, E. & Mach, M. ( 1996; ). Glycoprotein H of human cytomegalovirus is a major antigen for the neutralizing humoral immune response. J Gen Virol 77, 1537–1547.[CrossRef]
    [Google Scholar]
  43. Wang, X., Kenyon, W. J., Li, Q., Müllberg, J. & Hutt-Fletcher, L. M. ( 1998; ). Epstein-Barr virus uses different complexes of glycoproteins gH and gL to infect B lymphocytes and epithelial cells. J Virol 72, 5552–5558.
    [Google Scholar]
  44. Yaswen, L. R., Stephens, E. B., Davenport, L. C. & Hutt-Fletcher, L. M. ( 1993; ). Epstein-Barr virus glycoprotein gp85 associates with the BKRF2 gene product and is incompletely processed as a recombinant protein. Virology 195, 387–396.[CrossRef]
    [Google Scholar]
  45. Yewdell, J. W. & Hill, A. B. ( 2002; ). Viral interference with antigen presentation. Nat Immunol 3, 1019–1025.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81760-0
Loading
/content/journal/jgv/10.1099/vir.0.81760-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error