1887

Abstract

Circumstantial evidence suggests that the genome of (FBNYV), a nanovirus, consists of eight distinct, circular, single-stranded DNAs, each of about 1 kb and encoding only one protein. Here, the use of cloned full-length FBNYV DNAs for reproducing FBNYV-like symptoms in , the principal natural host of FBNYV, is reported. Characteristic symptoms of FBNYV infection were obtained in faba bean plants following biolistic DNA delivery or agroinoculation with all eight FBNYV DNAs. Although the eight different DNAs have been invariably detected in field samples infected with the various geographical FBNYV isolates, experimental infection with different combinations of fewer than eight DNAs also led to typical FBNYV symptoms. Even only five genome components, DNA-R, DNA-S, DNA-M, DNA-U1 and DNA-U2, were sufficient for inducing disease symptoms in upon agroinoculation. Symptomatic plants agroinoculated or bombarded with eight DNAs contained typical FBNYV virions; however, the virus was not transmitted by or , two efficient aphid vectors of FBNYV.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81753-0
2006-06-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/6/1735.html?itemId=/content/journal/jgv/10.1099/vir.0.81753-0&mimeType=html&fmt=ahah

References

  1. Andrejeva J., Merits A., Rabenstein F., Puurand Ü., Järvekülg L. 1996; Comparison of the nucleotide sequences of the 3′-terminal regions of one aphid and two non-aphid transmissible isolates of potato A potyvirus. Arch Virol 141:1207–1219 [CrossRef]
    [Google Scholar]
  2. Aronson M. N., Meyer A. D., Györgyey J., Katul L., Vetten H. J., Gronenborn B., Timchenko T. 2000; Clink, a nanovirus-encoded protein, binds both pRB and SKP1. J Virol 74:2967–2972 [CrossRef]
    [Google Scholar]
  3. Beetham P. R., Hafner G. J., Harding R. M., Dale J. L. 1997; Two mRNAs are transcribed from banana bunchy top virus DNA-1. J Gen Virol 78:229–236
    [Google Scholar]
  4. Bevan M. 1984; Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12:8711–8721 [CrossRef]
    [Google Scholar]
  5. Bio-Rad. 1996; Helios Gene Gun System Instruction Manual. http://www.bio-rad.com/LifeScience/pdf/Bulletin_9541.pdf
  6. Briddon R. W., Stanley J. 2006; Subviral agents associated with plant single-stranded DNA viruses. Virology 344:198–210 [CrossRef]
    [Google Scholar]
  7. Briddon R. W., Mansoor S., Bedford I. D., Pinner M. S., Saunders K., Stanley J., Zafar Y., Malik K. A., Markham P. G. 2001; Identification of DNA components required for induction of cotton leaf curl disease. Virology 285:234–243 [CrossRef]
    [Google Scholar]
  8. Chu P. W. G., Helms K. 1988; Novel virus-like particles containing circular single-stranded DNAs associated with subterranean clover stunt disease. Virology 167:38–49 [CrossRef]
    [Google Scholar]
  9. Chu P. W. G., Keese P., Qiu B. S., Waterhouse P. M., Gerlach W. L. 1993; Putative full-length clones of the genomic DNA segments of subterranean clover stunt virus and identification of the segment coding for the viral coat protein. Virus Res 27:161–171 [CrossRef]
    [Google Scholar]
  10. D'Arcy C. J., Martin R. R., Spiegel S. 1989; A comparative study of luteovirus purification methods. Can J Plant Pathol 11:251–255 [CrossRef]
    [Google Scholar]
  11. Dugdale B., Beetham P. R., Becker D. K., Harding R. M., Dale J. L. 1998; Promoter activity associated with the intergenic regions of banana bunchy top virus DNA-1 to -6 in transgenic tobacco and banana cells. J Gen Virol 79:2301–2311
    [Google Scholar]
  12. Edwards K., Johnstone C., Thompson C. 1991; A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res 19:1349 [CrossRef]
    [Google Scholar]
  13. Franz A., Makkouk K. M., Vetten H. J. 1997; Host range of faba bean necrotic yellows virus and potential yield loss in infected faba bean. Phytopathol Mediterr 36:94–103
    [Google Scholar]
  14. Franz A. W. E., van der Wilk F., Verbeek M., Dullemans A. M., van den Heuvel J. F. J. M. 1999; Faba bean necrotic yellows virus (genus Nanovirus ) requires a helper factor for its aphid transmission. Virology 262:210–219 [CrossRef]
    [Google Scholar]
  15. Gutierrez C. 2000; DNA replication and cell cycle in plants: learning from geminiviruses. EMBO J 19:792–799 [CrossRef]
    [Google Scholar]
  16. Hafner G. J., Stafford M. R., Wolter L. C., Harding R. M., Dale J. L. 1997; Nicking and joining activity of banana bunchy top virus replication protein in vitro . J Gen Virol 78:1795–1799
    [Google Scholar]
  17. Hamilton C. M., Frary A., Lewis C., Tanksley S. D. 1996; Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc Natl Acad Sci U S A 93:9975–9979 [CrossRef]
    [Google Scholar]
  18. Hanley-Bowdoin L., Settlage S. B., Robertson D. 2004; Reprogramming plant gene expression: a prerequisite to geminivirus DNA replication. Mol Plant Pathol 5:149–156 [CrossRef]
    [Google Scholar]
  19. Harding R. M., Burns T. M., Dale J. L. 1991; Virus-like particles associated with banana bunchy top disease contain small single-stranded DNA. J Gen Virol 72:225–230 [CrossRef]
    [Google Scholar]
  20. Harrison B. D. 1985; Advances in geminivirus research. Annu Rev Phytopathol 23:55–82 [CrossRef]
    [Google Scholar]
  21. Höhnle M., Höfer P., Bedford I. D., Briddon R. W., Markham P. G., Frischmuth T. 2001; Exchange of three amino acids in the coat protein results in efficient whitefly transmission of a nontransmissible Abutilon mosaic virus isolate. Virology 290:164–171 [CrossRef]
    [Google Scholar]
  22. Horser C. L., Harding R. M., Dale J. L. 2001; Banana bunchy top nanovirus DNA-1 encodes the ‘master’ replication initiation protein. J Gen Virol 82:459–464
    [Google Scholar]
  23. Jansen-Dürr P. 1996; How viral oncogenes make the cell cycle. Trends Genet 12:270–275 [CrossRef]
    [Google Scholar]
  24. Katul L., Vetten H. J., Maiss E., Makkouk K. M., Lesemann D. E., Casper R. 1993; Characterisation and serology of virus-like particles associated with faba bean necrotic yellows. Ann Appl Biol 123:629–647 [CrossRef]
    [Google Scholar]
  25. Katul L., Maiss E., Vetten H. J. 1995; Sequence analysis of a faba bean necrotic yellows virus DNA component containing a putative replicase gene. J Gen Virol 76:475–479 [CrossRef]
    [Google Scholar]
  26. Katul L., Maiss E., Morozov S. Yu., Vetten H. J. 1997; Analysis of six DNA components of the faba bean necrotic yellows virus genome and their structural affinity to related plant virus genomes. Virology 233:247–259 [CrossRef]
    [Google Scholar]
  27. Kheyr-Pour A., Bananej K., Dafalla G. A., Caciagli P., Noris E., Ahoonmanesh A., Lecoq H., Gronenborn B. 2000; Watermelon chlorotic stunt virus from the Sudan and Iran: sequence comparisons and identification of a whitefly-transmission determinant. Phytopathology 90:629–635 [CrossRef]
    [Google Scholar]
  28. Kornberg A., Baker T. A. 1992 DNA Replication , 2nd edn. New York: W. H. Freeman;
    [Google Scholar]
  29. Lee S. C., Wu M., Wong S. M. 1993; Nucleotide sequence of a Singapore isolate of zucchini yellow mosaic virus coat protein gene revealed an altered DAG motif. Virus Genes 7:381–387 [CrossRef]
    [Google Scholar]
  30. Liu S., Briddon R. W., Bedford I. D., Pinner M. S., Markham P. G. 1999; Identification of genes directly and indirectly involved in the insect transmission of African cassava mosaic geminivirus by Bemisia tabaci . Virus Genes 18:5–11 [CrossRef]
    [Google Scholar]
  31. Mansoor S., Khan S. H., Bashir A., Saeed M., Zafar Y., Malik K. A., Briddon R., Stanley J., Markham P. G. 1999; Identification of a novel circular single-stranded DNA associated with cotton leaf curl disease in Pakistan. Virology 259:190–199 [CrossRef]
    [Google Scholar]
  32. Mansoor S., Briddon R. W., Zafar Y., Stanley J. 2003; Geminivirus disease complexes: an emerging threat. Trends Plant Sci 8:128–134 [CrossRef]
    [Google Scholar]
  33. McGivern D. R., Findlay K. C., Montague N. P., Boulton M. I. 2005; An intact RBR-binding motif is not required for infectivity of Maize streak virus in cereals, but is required for invasion of mesophyll cells. J Gen Virol 86:797–801 [CrossRef]
    [Google Scholar]
  34. Murashige T., Skoog F. 1962; A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497 [CrossRef]
    [Google Scholar]
  35. Navot N., Ber R., Czosnek H. 1989; Rapid detection of tomato yellow leaf curl virus in squashes of plants and insect vectors. Phytopathology 79:562–568 [CrossRef]
    [Google Scholar]
  36. Noris E., Vaira A. M., Caciagli P., Masenga V., Gronenborn B., Accotto G. P. 1998; Amino acids in the capsid protein of tomato yellow leaf curl virus that are crucial for systemic infection, particle formation, and insect transmission. J Virol 72:10050–10057
    [Google Scholar]
  37. Rybicki E. P. 1994; A phylogenetic and evolutionary justification for three genera of Geminiviridae . Arch Virol 139:49–77 [CrossRef]
    [Google Scholar]
  38. Saunders K., Stanley J. 1999; A nanovirus-like DNA component associated with yellow vein disease of Ageratum conyzoides : evidence for interfamilial recombination between plant DNA viruses. Virology 264:142–152 [CrossRef]
    [Google Scholar]
  39. Saunders K., Bedford I. D., Briddon R. W., Markham P. G., Wong S. M., Stanley J. 2000; A unique virus complex causes Ageratum yellow vein disease. Proc Natl Acad Sci U S A 97:6890–6895 [CrossRef]
    [Google Scholar]
  40. Shepherd D. N., Martin D. P., McGivern D. R., Boulton M. I., Thomson J. A., Rybicki E. P. 2005; A three-nucleotide mutation altering the Maize streak virus Rep pRBR-interaction motif reduces symptom severity in maize and partially reverts at high frequency without restoring pRBR–Rep binding. J Gen Virol 86:803–813 [CrossRef]
    [Google Scholar]
  41. Shirasawa-Seo N., Sano Y., Nakamura S., Murakami T., Seo S., Ohashi Y., Hashimoto Y., Matsumoto T. 2005; Characteristics of the promoters derived from the single-stranded DNA components of Milk vetch dwarf virus in transgenic tobacco. J Gen Virol 86:1851–1860 [CrossRef]
    [Google Scholar]
  42. Tao X., Zhou X. 2004; A modified viral satellite DNA that suppresses gene expression in plants. Plant J 38:850–860 [CrossRef]
    [Google Scholar]
  43. Timchenko T., Bailone A., Devoret R. 1996; Btcd, a mouse protein that binds to curved DNA, can substitute in Escherichia coli for H-NS, a bacterial nucleoid protein. EMBO J 15:3986–3992
    [Google Scholar]
  44. Timchenko T., de Kouchkovsky F., Katul L., David C., Vetten H. J., Gronenborn B. 1999; A single Rep protein initiates replication of multiple genome components of faba bean necrotic yellows virus, a single-stranded DNA virus of plants. J Virol 73:10173–10182
    [Google Scholar]
  45. Timchenko T., Katul L., Sano Y., de Kouchkovsky F., Vetten H. J., Gronenborn B. 2000; The master Rep concept in nanovirus replication: identification of missing genome components and potential for natural genetic reassortment. Virology 274:189–195 [CrossRef]
    [Google Scholar]
  46. Vega-Arreguín J. C., Timchenko T., Gronenborn B., Ramírez B. C. 2005; A functional histidine-tagged replication initiator protein: implications for the study of single-stranded DNA virus replication in planta. J Virol 79:8422–8430 [CrossRef]
    [Google Scholar]
  47. Vetten H. J., Chu P. W. G., Dale J. L. 7 other authors 2005; Nanoviridae . In Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses pp  343–352 Edited by Fauquet C. M., Mayo M. A., Maniloff J., Desselberger U., Ball L. A. London: Elsevier/Academic Press;
    [Google Scholar]
  48. Wanitchakorn R., Harding R. M., Dale J. L. 1997; Banana bunchy top virus DNA-3 encodes the viral coat protein. Arch Virol 142:1673–1680 [CrossRef]
    [Google Scholar]
  49. Wanitchakorn R., Hafner G. J., Harding R. M., Dale J. L. 2000; Functional analysis of proteins encoded by banana bunchy top virus DNA-4 to -6. J Gen Virol 81:299–306
    [Google Scholar]
  50. Wetzel D. K., Ehrenshaft M., Denslow S. A., Daub M. E. 2004; Functional complementation between the PDX1 vitamin B6 biosynthetic gene of Cercospora nicotianae and pdxJ of Escherichia coli . FEBS Lett 564:143–146 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81753-0
Loading
/content/journal/jgv/10.1099/vir.0.81753-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error