1887

Abstract

RNA virus genomes contain -acting sequences and structural elements involved in virus replication. Both full-length and subgenomic negative-strand RNA synthesis are initiated at the 3′ terminus of the positive-strand genomic RNA of (EAV). To investigate the molecular mechanism of EAV RNA synthesis, the RNA secondary structure of the 3′-proximal region of the genome was analysed by chemical and enzymic probing. Based on the RNA secondary structure model derived from this analysis, several deletions were engineered in a full-length cDNA copy of the viral genome. Two RNA domains were identified that are essential for virus replication and most likely play a key role in viral RNA synthesis. The first domain, located directly upstream of the 3′ untranslated region (UTR) (nt 12610–12654 of the genome), is mainly single-stranded but contains one small stem–loop structure. The second domain is located within the 3′ UTR (nt 12661–12690) and folds into a prominent stem–loop structure with a large loop region. The location of this stem–loop structure near the 3′ terminus of the genome suggests that it may act as a recognition signal during the initiation of minus-strand RNA synthesis.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81750-0
2006-07-01
2021-10-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/7/1977.html?itemId=/content/journal/jgv/10.1099/vir.0.81750-0&mimeType=html&fmt=ahah

References

  1. Baric R. S., Yount B. 2000; Subgenomic negative-strand RNA function during mouse hepatitis virus infection. J Virol 74:4039–4046 [CrossRef]
    [Google Scholar]
  2. Buck K. W. 1996; Comparison of the replication of positive-stranded RNA viruses of plants and animals. Adv Virus Res 47:159–251
    [Google Scholar]
  3. Dreher T. W. 1999; Functions of the 3′-untranslated regions of positive strand RNA viral genomes. Annu Rev Phytopathol 37:151–174 [CrossRef]
    [Google Scholar]
  4. Ehresmann C., Baudin F., Mougel M., Romby P., Ebel J.-P., Ehresmann B. 1987; Probing the structure of RNAs in solution. Nucleic Acids Res 15:9109–9128 [CrossRef]
    [Google Scholar]
  5. Goebel S. J., Hsue B., Dombrowski T. F., Masters P. S. 2004; Characterization of the RNA components of a putative molecular switch in the 3′ untranslated region of the murine coronavirus genome. J Virol 78:669–682 [CrossRef]
    [Google Scholar]
  6. Hsue B., Masters P. S. 1997; A bulged stem–loop structure in the 3′ untranslated region of the genome of the coronavirus mouse hepatitis virus is essential for replication. J Virol 71:7567–7578
    [Google Scholar]
  7. Hsue B., Hartshorne T., Masters P. S. 2000; Characterization of an essential RNA secondary structure in the 3′ untranslated region of the murine coronavirus genome. J Virol 74:6911–6921 [CrossRef]
    [Google Scholar]
  8. Lin Y.-J., Liao C.-L., Lai M. M. C. 1994; Identification of the cis -acting signal for minus-strand RNA synthesis of a murine coronavirus: implications for the role of minus-strand RNA in RNA replication and transcription. J Virol 68:8131–8140
    [Google Scholar]
  9. Liu Q., Johnson R. F., Leibowitz J. L. 2001; Secondary structural elements within the 3′ untranslated region of mouse hepatitis virus strain JHM genomic RNA. J Virol 75:12105–12113 [CrossRef]
    [Google Scholar]
  10. Maines T. R., Brinton M. A. 2001; Identification of cell proteins that bind to the SHFV 3′ (+)NCR. Adv Exp Med Biol 494:647–653
    [Google Scholar]
  11. Maines T. R., Young M., Dinh N. N.-N., Brinton M. A. 2005; Two cellular proteins that interact with a stem loop in the simian hemorrhagic fever virus 3′(+)NCR RNA. Virus Res 109:109–124 [CrossRef]
    [Google Scholar]
  12. Molenkamp R., van Tol H., Rozier B. C. D., van der Meer Y., Spaan W. J. M., Snijder E. J. 2000; The arterivirus replicase is the only viral protein required for genome replication and subgenomic mRNA transcription. J Gen Virol 81:2491–2496
    [Google Scholar]
  13. Pasternak A. O., Gultyaev A. P., Spaan W. J. M., Snijder E. J. 2000; Genetic manipulation of arterivirus alternative mRNA leader–body junction sites reveals tight regulation of structural protein expression. J Virol 74:11642–11653 [CrossRef]
    [Google Scholar]
  14. Pasternak A. O., van den Born E., Spaan W. J. M., Snijder E. J. 2001; Sequence requirements for RNA strand transfer during nidovirus discontinuous subgenomic RNA synthesis. EMBO J 20:7220–7228 [CrossRef]
    [Google Scholar]
  15. Pasternak A. O., Spaan W. J. M., Snijder E. J. 2006; Nidovirus transcription: how to make sense…?. J Gen Virol 87:1403–1421 [CrossRef]
    [Google Scholar]
  16. Sawicki S. G., Sawicki D. L. 1995; Coronaviruses use discontinuous extension for synthesis of subgenome-length negative strands. Adv Exp Med Biol 380:499–506
    [Google Scholar]
  17. Sawicki S. G., Sawicki D. 2005; Coronavirus transcription: a perspective. In Current Topics in Microbiology and Immunology vol. 287 Coronavirus Replication and Reverse Genetics pp  31–55 Edited by Enjuanes L. Berlin: Springer;
    [Google Scholar]
  18. Sawicki D., Wang T., Sawicki S. 2001; The RNA structures engaged in replication and transcription of the A59 strain of mouse hepatitis virus. J Gen Virol 82:385–396
    [Google Scholar]
  19. Snijder E. J., Siddell S. G., Gorbalenya A. E. 2005; The order Nidovirales . In Topley and Wilson's Microbiology and Microbial Infections Virology pp  390–404 Edited by Mahy B. W, ter Meulen V. London: Hodder Arnold;
    [Google Scholar]
  20. van den Born E., Gultyaev A. P., Snijder E. J. 2004; Secondary structure and function of the 5′-proximal region of the equine arteritis virus RNA genome. RNA 10:424–437 [CrossRef]
    [Google Scholar]
  21. van der Meer Y., van Tol H., Locker J. K., Snijder E. J. 1998; ORF1a-encoded replicase subunits are involved in the membrane association of the arterivirus replication complex. J Virol 72:6689–6698
    [Google Scholar]
  22. van Dijk A. A., Makeyev E. V., Bamford D. H. 2004; Initiation of viral RNA-dependent RNA polymerization. J Gen Virol 85:1077–1093 [CrossRef]
    [Google Scholar]
  23. van Dinten L. C., den Boon J. A., Wassenaar A. L. M., Spaan W. J. M., Snijder E. J. 1997; An infectious arterivirus cDNA clone: identification of a replicase point mutation that abolishes discontinuous mRNA transcription. Proc Natl Acad Sci U S A 94:991–996 [CrossRef]
    [Google Scholar]
  24. van Marle G., Dobbe J. C., Gultyaev A. P., Luytjes W., Spaan W. J. M., Snijder E. J. 1999; Arterivirus discontinuous mRNA transcription is guided by base pairing between sense and antisense transcription-regulating sequences. Proc Natl Acad Sci U S A 96:12056–12061 [CrossRef]
    [Google Scholar]
  25. Verheije M. H., Olsthoorn R. C. L., Kroese M. V., Rottier P. J. M., Meulenberg J. J. M. 2002; Kissing interaction between 3′ noncoding and coding sequences is essential for porcine arterivirus RNA replication. J Virol 76:1521–1526 [CrossRef]
    [Google Scholar]
  26. Williams G. D., Chang R.-Y., Brian D. A. 1999; A phylogenetically conserved hairpin-type 3′ untranslated region pseudoknot functions in coronavirus RNA replication. J Virol 73:8349–8355
    [Google Scholar]
  27. Yu W., Leibowitz J. L. 1995; Specific binding of host cellular proteins to multiple sites within the 3′ end of mouse hepatitis virus genomic RNA. J Virol 69:2016–2023
    [Google Scholar]
  28. Zuker M. 1989; On finding all suboptimal foldings of an RNA molecule. Science 244:48–52 [CrossRef]
    [Google Scholar]
  29. Zuker M. 2003; mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415 [CrossRef]
    [Google Scholar]
  30. Zúñiga S., Sola I., Alonso S., Enjuanes L. 2004; Sequence motifs involved in the regulation of discontinuous coronavirus subgenomic RNA synthesis. J Virol 78:980–994 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81750-0
Loading
/content/journal/jgv/10.1099/vir.0.81750-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error