1887

Abstract

RNA virus genomes contain -acting sequences and structural elements involved in virus replication. Both full-length and subgenomic negative-strand RNA synthesis are initiated at the 3′ terminus of the positive-strand genomic RNA of (EAV). To investigate the molecular mechanism of EAV RNA synthesis, the RNA secondary structure of the 3′-proximal region of the genome was analysed by chemical and enzymic probing. Based on the RNA secondary structure model derived from this analysis, several deletions were engineered in a full-length cDNA copy of the viral genome. Two RNA domains were identified that are essential for virus replication and most likely play a key role in viral RNA synthesis. The first domain, located directly upstream of the 3′ untranslated region (UTR) (nt 12610–12654 of the genome), is mainly single-stranded but contains one small stem–loop structure. The second domain is located within the 3′ UTR (nt 12661–12690) and folds into a prominent stem–loop structure with a large loop region. The location of this stem–loop structure near the 3′ terminus of the genome suggests that it may act as a recognition signal during the initiation of minus-strand RNA synthesis.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81750-0
2006-07-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/7/1977.html?itemId=/content/journal/jgv/10.1099/vir.0.81750-0&mimeType=html&fmt=ahah

References

  1. Baric, R. S. & Yount, B. ( 2000; ). Subgenomic negative-strand RNA function during mouse hepatitis virus infection. J Virol 74, 4039–4046.[CrossRef]
    [Google Scholar]
  2. Buck, K. W. ( 1996; ). Comparison of the replication of positive-stranded RNA viruses of plants and animals. Adv Virus Res 47, 159–251.
    [Google Scholar]
  3. Dreher, T. W. ( 1999; ). Functions of the 3′-untranslated regions of positive strand RNA viral genomes. Annu Rev Phytopathol 37, 151–174.[CrossRef]
    [Google Scholar]
  4. Ehresmann, C., Baudin, F., Mougel, M., Romby, P., Ebel, J.-P. & Ehresmann, B. ( 1987; ). Probing the structure of RNAs in solution. Nucleic Acids Res 15, 9109–9128.[CrossRef]
    [Google Scholar]
  5. Goebel, S. J., Hsue, B., Dombrowski, T. F. & Masters, P. S. ( 2004; ). Characterization of the RNA components of a putative molecular switch in the 3′ untranslated region of the murine coronavirus genome. J Virol 78, 669–682.[CrossRef]
    [Google Scholar]
  6. Hsue, B. & Masters, P. S. ( 1997; ). A bulged stem–loop structure in the 3′ untranslated region of the genome of the coronavirus mouse hepatitis virus is essential for replication. J Virol 71, 7567–7578.
    [Google Scholar]
  7. Hsue, B., Hartshorne, T. & Masters, P. S. ( 2000; ). Characterization of an essential RNA secondary structure in the 3′ untranslated region of the murine coronavirus genome. J Virol 74, 6911–6921.[CrossRef]
    [Google Scholar]
  8. Lin, Y.-J., Liao, C.-L. & Lai, M. M. C. ( 1994; ). Identification of the cis-acting signal for minus-strand RNA synthesis of a murine coronavirus: implications for the role of minus-strand RNA in RNA replication and transcription. J Virol 68, 8131–8140.
    [Google Scholar]
  9. Liu, Q., Johnson, R. F. & Leibowitz, J. L. ( 2001; ). Secondary structural elements within the 3′ untranslated region of mouse hepatitis virus strain JHM genomic RNA. J Virol 75, 12105–12113.[CrossRef]
    [Google Scholar]
  10. Maines, T. R. & Brinton, M. A. ( 2001; ). Identification of cell proteins that bind to the SHFV 3′ (+)NCR. Adv Exp Med Biol 494, 647–653.
    [Google Scholar]
  11. Maines, T. R., Young, M., Dinh, N. N.-N. & Brinton, M. A. ( 2005; ). Two cellular proteins that interact with a stem loop in the simian hemorrhagic fever virus 3′(+)NCR RNA. Virus Res 109, 109–124.[CrossRef]
    [Google Scholar]
  12. Molenkamp, R., van Tol, H., Rozier, B. C. D., van der Meer, Y., Spaan, W. J. M. & Snijder, E. J. ( 2000; ). The arterivirus replicase is the only viral protein required for genome replication and subgenomic mRNA transcription. J Gen Virol 81, 2491–2496.
    [Google Scholar]
  13. Pasternak, A. O., Gultyaev, A. P., Spaan, W. J. M. & Snijder, E. J. ( 2000; ). Genetic manipulation of arterivirus alternative mRNA leader–body junction sites reveals tight regulation of structural protein expression. J Virol 74, 11642–11653.[CrossRef]
    [Google Scholar]
  14. Pasternak, A. O., van den Born, E., Spaan, W. J. M. & Snijder, E. J. ( 2001; ). Sequence requirements for RNA strand transfer during nidovirus discontinuous subgenomic RNA synthesis. EMBO J 20, 7220–7228.[CrossRef]
    [Google Scholar]
  15. Pasternak, A. O., Spaan, W. J. M. & Snijder, E. J. ( 2006; ). Nidovirus transcription: how to make sense…? J Gen Virol 87, 1403–1421.[CrossRef]
    [Google Scholar]
  16. Sawicki, S. G. & Sawicki, D. L. ( 1995; ). Coronaviruses use discontinuous extension for synthesis of subgenome-length negative strands. Adv Exp Med Biol 380, 499–506.
    [Google Scholar]
  17. Sawicki, S. G. & Sawicki, D. ( 2005; ). Coronavirus transcription: a perspective. In Current Topics in Microbiology and Immunology, vol. 287, Coronavirus Replication and Reverse Genetics, pp. 31–55. Edited by L. Enjuanes. Berlin: Springer.
  18. Sawicki, D., Wang, T. & Sawicki, S. ( 2001; ). The RNA structures engaged in replication and transcription of the A59 strain of mouse hepatitis virus. J Gen Virol 82, 385–396.
    [Google Scholar]
  19. Snijder, E. J., Siddell, S. G. & Gorbalenya, A. E. ( 2005; ). The order Nidovirales. In Topley and Wilson's Microbiology and Microbial Infections: Virology, pp. 390–404. Edited by B. W. Mahy & V. ter Meulen. London: Hodder Arnold.
  20. van den Born, E., Gultyaev, A. P. & Snijder, E. J. ( 2004; ). Secondary structure and function of the 5′-proximal region of the equine arteritis virus RNA genome. RNA 10, 424–437.[CrossRef]
    [Google Scholar]
  21. van der Meer, Y., van Tol, H., Locker, J. K. & Snijder, E. J. ( 1998; ). ORF1a-encoded replicase subunits are involved in the membrane association of the arterivirus replication complex. J Virol 72, 6689–6698.
    [Google Scholar]
  22. van Dijk, A. A., Makeyev, E. V. & Bamford, D. H. ( 2004; ). Initiation of viral RNA-dependent RNA polymerization. J Gen Virol 85, 1077–1093.[CrossRef]
    [Google Scholar]
  23. van Dinten, L. C., den Boon, J. A., Wassenaar, A. L. M., Spaan, W. J. M. & Snijder, E. J. ( 1997; ). An infectious arterivirus cDNA clone: identification of a replicase point mutation that abolishes discontinuous mRNA transcription. Proc Natl Acad Sci U S A 94, 991–996.[CrossRef]
    [Google Scholar]
  24. van Marle, G., Dobbe, J. C., Gultyaev, A. P., Luytjes, W., Spaan, W. J. M. & Snijder, E. J. ( 1999; ). Arterivirus discontinuous mRNA transcription is guided by base pairing between sense and antisense transcription-regulating sequences. Proc Natl Acad Sci U S A 96, 12056–12061.[CrossRef]
    [Google Scholar]
  25. Verheije, M. H., Olsthoorn, R. C. L., Kroese, M. V., Rottier, P. J. M. & Meulenberg, J. J. M. ( 2002; ). Kissing interaction between 3′ noncoding and coding sequences is essential for porcine arterivirus RNA replication. J Virol 76, 1521–1526.[CrossRef]
    [Google Scholar]
  26. Williams, G. D., Chang, R.-Y. & Brian, D. A. ( 1999; ). A phylogenetically conserved hairpin-type 3′ untranslated region pseudoknot functions in coronavirus RNA replication. J Virol 73, 8349–8355.
    [Google Scholar]
  27. Yu, W. & Leibowitz, J. L. ( 1995; ). Specific binding of host cellular proteins to multiple sites within the 3′ end of mouse hepatitis virus genomic RNA. J Virol 69, 2016–2023.
    [Google Scholar]
  28. Zuker, M. ( 1989; ). On finding all suboptimal foldings of an RNA molecule. Science 244, 48–52.[CrossRef]
    [Google Scholar]
  29. Zuker, M. ( 2003; ). mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31, 3406–3415.[CrossRef]
    [Google Scholar]
  30. Zúñiga, S., Sola, I., Alonso, S. & Enjuanes, L. ( 2004; ). Sequence motifs involved in the regulation of discontinuous coronavirus subgenomic RNA synthesis. J Virol 78, 980–994.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81750-0
Loading
/content/journal/jgv/10.1099/vir.0.81750-0
Loading

Data & Media loading...

Supplements

vol. , part 7, pp. 1977 - 1983

RNA secondary structure model for the deletion mutants in the 3′-proximal region of the EAV genome [PDF](96 KB)



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error