1887

Abstract

The N-terminal 198 residues of NS3 (NS3-N) of (HCV) subtype 1b obtained from 29 patients, as well as full-length NS3 (NS3-Full), were analysed for their subcellular localization, interaction with the tumour suppressor p53 and serine protease activity in the presence and absence of the viral cofactor NS4A. Based on the subcellular-localization patterns in the absence of NS4A, NS3-N sequences were classified into three groups, with each group exhibiting either dot-like, diffuse or a mixed type of localization. Chimeric NS3-Full sequences, each consisting of an individual NS3-N and a shared C-terminal sequence, showed the same localization patterns as those of the respective NS3-N. Site-directed mutagenesis experiments revealed that a single or a few amino acid substitutions at a particular position(s) of NS3-N altered the localization pattern. Interestingly, NS3 of the dot-like type, either NS3-N or NS3-Full, interacted with p53 more strongly than that of the diffuse type, in both the presence and the absence of NS4A. Moreover, NS3-N of the dot-like type suppressed -activating activity of p53 more strongly than that of the diffuse type. Serine protease activity did not differ significantly between the two types of NS3. In HCV RNA replicon-harbouring cells, physical interaction between NS3 and p53 was observed consistently and p53-mediated transcriptional activation was suppressed significantly compared with HCV RNA-negative control cells. Our results collectively suggest the possibility that NS3 plays an important role in the hepatocarcinogenesis of HCV by interacting differentially with p53 in an NS3 sequence-dependent manner.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81735-0
2006-06-01
2021-05-07
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/6/1703.html?itemId=/content/journal/jgv/10.1099/vir.0.81735-0&mimeType=html&fmt=ahah

References

  1. Appella E., Anderson C. W. 2001; Post-translational modifications and activation of p53 by genotoxic stresses. Eur J Biochem 268:2764–2772 [CrossRef]
    [Google Scholar]
  2. Breiman A., Grandvaux N., Lin R., Ottone C., Akira S., Yoneyama M., Fujita T., Hiscott J., Meurs E. F. 2005; Inhibition of RIG-I-dependent signaling to the interferon pathway during hepatitis C virus expression and restoration of signaling by IKK ε . J Virol 79:3969–3978 [CrossRef]
    [Google Scholar]
  3. Cheng P.-L., Chang M.-H., Chao C.-H., Wu Lee Y.-H. 2004; Hepatitis C viral proteins interact with Smad3 and differentially regulate TGF- β /Smad3-mediated transcriptional activation. Oncogene 23:7821–7838 [CrossRef]
    [Google Scholar]
  4. Fernandez-Fernandez M. R., Veprintsev D. B., Fersht A. R. 2005; Proteins of the S100 family regulate the oligomerization of p53 tumor suppressor. Proc Natl Acad Sci U S A 102:4735–4740 [CrossRef]
    [Google Scholar]
  5. Florese R. H., Nagano-Fujii M., Iwanaga Y., Hidajat R., Hotta H. 2002; Inhibition of protein synthesis by the nonstructural proteins NS4A and NS4B of hepatitis C virus. Virus Res 90:119–131 [CrossRef]
    [Google Scholar]
  6. Foy E., Li K., Wang C., Sumpter R. Jr, Ikeda M., Lemon S. M., Gale M., Jr. 2003; Regulation of interferon regulatory factor-3 by the hepatitis C virus serine protease. Science 300:1145–1148 [CrossRef]
    [Google Scholar]
  7. Foy E., Li K., Sumpter R. Jr 8 other authors 2005; Control of antiviral defenses through hepatitis C virus disruption of retinoic acid-inducible gene-I signaling. Proc Natl Acad Sci U S A 102:2986–2991 [CrossRef]
    [Google Scholar]
  8. Fuerst T. R., Niles E. G., Studier F. W., Moss B. 1986; Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A 83:8122–8126 [CrossRef]
    [Google Scholar]
  9. Fujita T., Ishido S., Muramatsu S., Itoh M., Hotta H. 1996; Suppression of actinomycin D-induced apoptosis by the NS3 protein of hepatitis C virus. Biochem Biophys Res Commun 229:825–831 [CrossRef]
    [Google Scholar]
  10. Hidajat R., Nagano-Fujii M., Deng L., Tanaka M., Takigawa Y., Kitazawa S., Hotta H. 2005; Hepatitis C virus NS3 protein interacts with ELKS- δ and ELKS- α , members of a novel protein family involved in intracellular transport and secretory pathways. J Gen Virol 86:2197–2208 [CrossRef]
    [Google Scholar]
  11. Ikeda M., Abe K., Dansako H., Nakamura T., Naka K., Kato N. 2005; Efficient replication of a full-length hepatitis C virus genome, strain O, in cell culture, and development of a luciferase reporter system. Biochem Biophys Res Commun 329:1350–1359 [CrossRef]
    [Google Scholar]
  12. Ishido S., Hotta H. 1998; Complex formation of the nonstructural protein 3 of hepatitis C virus with the p53 tumor suppressor. FEBS Lett 438:258–262 [CrossRef]
    [Google Scholar]
  13. Ishido S., Muramatsu S., Fujita T., Iwanaga Y., Tong W.-Y., Katayama Y., Itoh M., Hotta H. 1997; Wild-type, but not mutant-type, p53 enhances nuclear accumulation of the NS3 protein of hepatitis C virus. Biochem Biophys Res Commun 230:431–436 [CrossRef]
    [Google Scholar]
  14. Kadoya H., Nagano-Fujii M., Deng L., Nakazono N., Hotta H. 2005; Nonstructural proteins 4A and 4B of hepatitis C virus transactivate the interleukin 8 promoter. Microbiol Immunol 49:265–273 [CrossRef]
    [Google Scholar]
  15. Kao C.-F., Chen S.-Y., Chen J.-Y., Wu Lee Y.-H. 2004; Modulation of p53 transcription regulatory activity and post-translational modification by hepatitis C virus core protein. Oncogene 23:2472–2483 [CrossRef]
    [Google Scholar]
  16. Kim D. W., Gwack Y., Han J. H., Choe J. 1995; C-terminal domain of the hepatitis C virus NS3 protein contains an RNA helicase activity. Biochem Biophys Res Commun 215:160–166 [CrossRef]
    [Google Scholar]
  17. Kim J.-E., Song W. K., Chung K. M., Back S. H., Jang S. K. 1999; Subcellular localization of hepatitis C viral proteins in mammalian cells. Arch Virol 144:329–343 [CrossRef]
    [Google Scholar]
  18. Kwun H. J., Jung E. Y., Ahn J. Y., Lee M. N., Jang K. L. 2001; p53-dependent transcriptional repression of p21waf1 by hepatitis C virus NS3. J Gen Virol 82:2235–2241
    [Google Scholar]
  19. Lan K.-H., Sheu M.-L., Hwang S.-J. & 8 other authors 2002; HCV NS5A interacts with p53 and inhibits p53-mediated apoptosis. Oncogene 21:4801–4811 [CrossRef]
    [Google Scholar]
  20. Levine A. J. 1997; p53, the cellular gatekeeper for growth and division. Cell 88:323–331 [CrossRef]
    [Google Scholar]
  21. Lin C., Prágai B. M., Grakoui A., Xu J., Rice C. M. 1994; Hepatitis C virus NS3 serine proteinase: trans -cleavage requirements and processing kinetics. J Virol 68:8147–8157
    [Google Scholar]
  22. Loguercio C., Cuomo A., Tuccillo C., Gazzerro P., Cioffi M., Molinari A. M., Del Vecchio Blanco C. 2003; Liver p53 expression in patients with HCV-related chronic hepatitis. J Viral Hepat 10:266–270 [CrossRef]
    [Google Scholar]
  23. Lohmann V., Körner F., Dobierzewska A., Bartenschlager R. 2001; Mutations in hepatitis C virus RNAs conferring cell culture adaptation. J Virol 75:1437–1449 [CrossRef]
    [Google Scholar]
  24. Longworth M. S., Laimins L. A. 2004; Pathogenesis of human papillomaviruses in differentiating epithelia. Microbiol Mol Biol Rev 68:362–372 [CrossRef]
    [Google Scholar]
  25. Martin M. E. D., Berk A. J. 1998; Adenovirus E1B 55K represses p53 activation in vitro. J Virol 72:3146–3154
    [Google Scholar]
  26. McLure K. G., Lee P. W. K. 1998; How p53 binds DNA as a tetramer. EMBO J 17:3342–3350 [CrossRef]
    [Google Scholar]
  27. Moss B., Elroy-Stein O., Mizukami T., Alexander W. A., Fuerst T. R. 1990; New mammalian expression vectors. Nature 348:91–92 [CrossRef]
    [Google Scholar]
  28. Mottola G., Cardinali G., Ceccacci A., Trozzi C., Bartholomew L., Torrisi M. R., Pedrazzini E., Bonatti S., Migliaccio G. 2002; Hepatitis C virus nonstructural proteins are localized in a modified endoplasmic reticulum of cells expressing viral subgenomic replicons. Virology 293:31–43 [CrossRef]
    [Google Scholar]
  29. Müller-Tiemann B. F., Halazonetis T. D., Elting J. J. 1998; Identification of an additional negative regulatory region for p53 sequence-specific DNA binding. Proc Natl Acad Sci U S A 95:6079–6084 [CrossRef]
    [Google Scholar]
  30. Münger K., Howley P. M. 2002; Human papillomavirus immortalization and transformation functions. Virus Res 89:213–228 [CrossRef]
    [Google Scholar]
  31. Muramatsu S., Ishido S., Fujita T., Itoh M., Hotta H. 1997; Nuclear localization of the NS3 protein of hepatitis C virus and factors affecting the localization. J Virol 71:4954–4961
    [Google Scholar]
  32. Ogata S., Ku Y., Yoon S., Makino S., Nagano-Fujii M., Hotta H. 2002; Correlation between secondary structure of an amino-terminal portion of the nonstructural proteins 3 (NS3) of hepatitis C virus and development of hepatocellular carcinoma. Microbiol Immunol 46:549–554 [CrossRef]
    [Google Scholar]
  33. Ogata S., Florese R. H., Nagano-Fujii M. & 7 other authors 2003; Identification of hepatitis C virus (HCV) subtype 1b strains that are highly, or only weakly, associated with hepatocellular carcinoma on the basis of the secondary structure of an amino-terminal portion of the HCV NS3 protein. J Clin Microbiol 41:2835–2841 [CrossRef]
    [Google Scholar]
  34. Qadri I., Iwahashi M., Simon F. 2002; Hepatitis C virus NS5A protein binds TBP and p53, inhibiting their DNA binding and p53 interactions with TBP and ERCC3. Biochim Biophys Acta 1592:193–204 [CrossRef]
    [Google Scholar]
  35. Reed K. E., Rice C. M. 2000; Overview of hepatitis C virus genome structure, polyprotein processing, and protein properties. Curr Top Microbiol Immunol 242:55–84
    [Google Scholar]
  36. Saito I., Miyamura T., Ohbayashi A. & 10 other authors 1990; Hepatitis C virus infection is associated with the development of hepatocellular carcinoma. Proc Natl Acad Sci U S A 87:6547–6549 [CrossRef]
    [Google Scholar]
  37. Sakamuro D., Furukawa T., Takegami T. 1995; Hepatitis C virus nonstructural protein NS3 transforms NIH3T3 cells. J Virol 69:3893–3896
    [Google Scholar]
  38. Sheppard H. M., Corneillie S. I., Espiritu C., Gatti A., Liu X. 1999; New insights into the mechanism of inhibition of p53 by simian virus 40 large T antigen. Mol Cell Biol 19:2746–2753
    [Google Scholar]
  39. Taguchi T., Nagano-Fujii M., Akutsu M., Kadoya H., Ohgimoto S., Ishido S., Hotta H. 2004; Hepatitis C virus NS5A protein interacts with 2′,5′-oligoadenylate synthetase and inhibits antiviral activity of IFN in an IFN sensitivity-determining region-independent manner. J Gen Virol 85:959–969 [CrossRef]
    [Google Scholar]
  40. Tanaka M., Nagano-Fujii M., Deng L., Ishido S., Sada K., Hotta H. 2006; Single-point mutations of hepatitis C virus NS3 that impair p53 interaction and anti-apoptotic activity of NS3. Biochem Biophys Res Commun 340:792–799 [CrossRef]
    [Google Scholar]
  41. Truant R., Antunovic J., Greenblatt J., Prives C., Cromlish J. A. 1995; Direct interaction of the hepatitis B virus HBx protein with p53 leads to inhibition by HBx of p53 response element directed-transactivation. J Virol 69:1851–1859
    [Google Scholar]
  42. Waterman M. J. F., Stavridi E. S., Waterman J. L. F., Halazonetis T. D. 1998; ATM-dependent activation of p53 involves dephosphorylation and association with 14-3-3 proteins. Nat Genet 19:175–178 [CrossRef]
    [Google Scholar]
  43. Weinberg R. L., Veprintsev D. B., Fersht A. R. 2004; Cooperative binding of tetrameric p53 to DNA. J Mol Biol 341:1145–1159 [CrossRef]
    [Google Scholar]
  44. Zemel R., Gerechet S., Greif H. & 7 other authors 2001; Cell transformation induced by hepatitis C virus NS3 serine protease. J Viral Hepat 8:96–102 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81735-0
Loading
/content/journal/jgv/10.1099/vir.0.81735-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error