Characterization of an envelope protein (VP110) of Free

Abstract

A protein of 110 kDa (termed VP110) from the envelope fraction of (WSSV) was identified by SDS-PAGE and mass spectrometry. The resulting amino acid sequence matched an open reading frame () containing an Arg–Gly–Asp (RGD) motif in the WSSV genome database. To validate the mass-spectrometry result, the C-terminal segment of the open reading frame was expressed in as a fusion protein, which was used to produce specific antibody. Analysis by Western blotting and immunoelectron microscopy demonstrated that VP110 was an envelope protein of WSSV. An interaction analysis was performed between VP110 and the host cells, using a fluorescence assay and a competitive-inhibition assay. The results showed that VP110 was capable of attaching to host cells and that adhesion could be inhibited by synthetic RGDT peptides, suggesting that the RGD motif in the VP110 sequence may play a role in WSSV infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81730-0
2006-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/7/1909.html?itemId=/content/journal/jgv/10.1099/vir.0.81730-0&mimeType=html&fmt=ahah

References

  1. Akula S. M., Pramod N. P., Wang F.-Z., Chandran B. 2002; Integrin α 3 β 1 (CD 49c/29) is a cellular receptor for Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) entry into the target cells. Cell 108:407–419 [CrossRef]
    [Google Scholar]
  2. Basak A. K., Gouet P., Grimes J., Roy P., Stuart D. 1996; Crystal structure of the top domain of African horse sickness virus VP7: comparisons with bluetongue virus VP7. J Virol 70:3797–3806
    [Google Scholar]
  3. Boonyakiat Y., Hughes P. J., Ghazi F., Stanway G. 2001; Arginine-glycine-aspartic acid motif is critical for human parechovirus 1 entry. J Virol 75:10000–10004 [CrossRef]
    [Google Scholar]
  4. Brake D. A., Debouck C., Biesecker G. 1990; Identification of an Arg-Gly-Asp (RGD) cell adhesion site in human immunodeficiency virus type 1 transactivation protein, tat . J Cell Biol 111:1275–1281 [CrossRef]
    [Google Scholar]
  5. Chang P. S., Lo C. F., Wang Y. C., Kou G. H. 1996; Identification of white spot syndrome associated baculovirus (WSBV) target organs in the shrimp Penaeus monodon by in situ hybridization. Dis Aquat Organ 27:131–139 [CrossRef]
    [Google Scholar]
  6. Chávez A., Pujol M., Haro I., Alsina M. A., Cajal Y. 2001; Membrane fusion by an RGD-containing sequence from the core protein VP3 of hepatitis A virus and the RGA-analogue: implications for viral infection. Biopolymers 58:63–77 [CrossRef]
    [Google Scholar]
  7. Chen X. F., Chen P., Wu D. H. 1997; Study on a new bacilliform virus in cultured shrimps. Sci China Ser C Life Sci 27:415–420
    [Google Scholar]
  8. Chou H. Y., Huang C. Y., Wang C. H., Chiang H. C., Lo C. F. 1995; Pathogenicity of a baculovirus infection causing white spot syndrome in cultured penaeid shrimp in Taiwan. Dis Aquat Organ 23:165–173 [CrossRef]
    [Google Scholar]
  9. Eckerskorn C., Lottspeich F. 1989; Internal amino acid sequence analysis of proteins separated by gel electrophoresis after tryptic digestion in polyacrylamide matrix. Chromatographia 28:92–94 [CrossRef]
    [Google Scholar]
  10. Fox G., Parry N. R., Barnett P. V., McGinn B., Rowlands D. J., Brown F. 1989; The cell attachment site on foot-and-mouth disease virus includes the amino acid sequence RGD (arginine-glycine-aspartic acid). J Gen Virol 70:625–637 [CrossRef]
    [Google Scholar]
  11. Huang C., Zhang X., Lin Q., Xu X., Hew C.-L. 2002a; Characterization of a novel envelope protein (VP281) of shrimp white spot syndrome virus by mass spectrometry. J Gen Virol 83:2385–2392
    [Google Scholar]
  12. Huang C., Zhang X., Lin Q., Xu X., Hu Z., Hew C.-L. 2002b; Proteomic analysis of shrimp white spot syndrome viral proteins and characterization of a novel envelope protein VP466. Mol Cell Proteomics 1:223–231 [CrossRef]
    [Google Scholar]
  13. Jackson T., Blakemore W., Newman J. W. I., Knowles N. J., Mould A. P., Humphries M. J., King A. M. Q. 2000; Foot-and-mouth disease virus is a ligand for the high-affinity binding conformation of integrin α 5 β 1: influence of the leucine residue within the RGDL motif on selectivity of integrin binding. J Gen Virol 81:1383–1391
    [Google Scholar]
  14. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  15. Li L., Xie X., Yang F. 2005; Identification and characterization of a prawn white spot syndrome virus gene that encodes an envelope protein VP31. Virology 340:125–132 [CrossRef]
    [Google Scholar]
  16. Li H., Zhu Y., Xie X., Yang F. 2006; Identification of a novel envelope protein (VP187) gene from shrimp white spot syndrome virus. Virus Res 115:76–84 [CrossRef]
    [Google Scholar]
  17. Mason P. W., Rieder E., Baxt B. 1994; RGD sequence of foot-and-mouth disease virus is essential for infecting cells via the natural receptor but can be bypassed by an antibody-dependent enhancement pathway. Proc Natl Acad Sci U S A 91:1932–1936 [CrossRef]
    [Google Scholar]
  18. Rosenfeld J., Capdevielle J., Guillemot J. C., Ferrara P. 1992; In-gel digestion of proteins for internal sequence analysis after one- or two-dimensional gel electrophoresis. Anal Biochem 203:173–179 [CrossRef]
    [Google Scholar]
  19. Tan B.-H., Nason E., Staeuber N., Jiang W., Monastryrskaya K., Roy P. 2001; RGD tripeptide of bluetongue virus VP7 protein is responsible for core attachment to Culicoides cells. J Virol 75:3937–3947 [CrossRef]
    [Google Scholar]
  20. Torshin I. Y. 2002; Structural criteria of biologically active RGD-sites for analysis of protein cellular function – a bioinformatics study. Med Sci Monit 8:BR301–BR312
    [Google Scholar]
  21. Tsai J.-M., Wang H.-C., Leu J.-H., Hsiao H.-H., Wang A. H.-J., Kou G.-H., Lo C.-F. 2004; Genomic and proteomic analysis of thirty-nine structural proteins of shrimp white spot syndrome virus. J Virol 78:11360–11370 [CrossRef]
    [Google Scholar]
  22. van Hulten M. C. W., Witteveldt J., Peters S., Kloosterboer N., Tarchini R., Fiers M., Sandbrink H., Lankhorst R. K., Vlak J. M. 2001a; The white spot syndrome virus DNA genome sequence. Virology 286:7–22 [CrossRef]
    [Google Scholar]
  23. van Hulten M. C. W., Witteveldt J., Snippe M., Vlak J. M. 2001b; White spot syndrome virus envelope protein VP28 is involved in the systemic infection of shrimp. Virology 285:228–233 [CrossRef]
    [Google Scholar]
  24. Verdaguer N., Mateu M. G., Andreu D., Giralt E., Domingo E., Fita I. 1995; Structure of the major antigen loop of foot-and-mouth disease virus complexed with a neutralizing antibody: direct involvement of the Arg-Gly-Asp motif in the interaction. EMBO J 14:1690–1696
    [Google Scholar]
  25. Villaverde A., Feliu J. X., Harbottle R. P., Benito A., Coutelle C. 1996; A recombinant, arginine-glycine-aspartic acid (RGD) motif from foot-and-mouth disease virus binds mammalian cells through vitronectin and, to a lower extent, fibronectin receptors. Gene 180:101–106 [CrossRef]
    [Google Scholar]
  26. Wang C. H., Lo C. F., Leu J. H. & 7 other authors 1995; Purification and genomic analysis of baculovirus associated with white spot syndrome (WSBV) of Penaeus monodon . Dis Aquat Organ 23:239–242 [CrossRef]
    [Google Scholar]
  27. Wang F.-Z., Akula S. M., Sharma-Walia N., Zeng L., Chandran B. 2003; Human herpesvirus 8 envelope glycoprotein B mediates cell adhesion via its RGD sequence. J Virol 77:3131–3147 [CrossRef]
    [Google Scholar]
  28. Wongteerasupaya C., Vickers J. E., Sriurairatana S. & 7 other authors 1995; A non-occluded, systemic baculovirus that occurs in cells of ectodermal and mesodermal origin and causes high mortality in the black tiger prawn Penaeus monodon . Dis Aquat Organ 21:69–77 [CrossRef]
    [Google Scholar]
  29. Wu W., Wang L., Zhang X. 2005; Identification of white spot syndrome virus (WSSV) envelope proteins involved in shrimp infection. Virology 332:578–583 [CrossRef]
    [Google Scholar]
  30. Xie X., Yang F. 2005; Interaction of white spot syndrome virus VP26 protein with actin. Virology 336:93–99 [CrossRef]
    [Google Scholar]
  31. Xie X., Li H., Xu L., Yang F. 2005; A simple and efficient method for purification of intact white spot syndrome virus (WSSV) viral particles. Virus Res 108:63–67 [CrossRef]
    [Google Scholar]
  32. Yang F., He J., Lin X., Li Q., Pan D., Zhang X., Xu X. 2001; Complete genome sequence of the shrimp white spot bacilliform virus. J Virol 75:11811–11820 [CrossRef]
    [Google Scholar]
  33. Zhang X., Huang C., Xu X., Hew C. L. 2002a; Identification and localization of a prawn white spot syndrome virus gene that encodes an envelope protein. J Gen Virol 83:1069–1074
    [Google Scholar]
  34. Zhang X., Huang C., Xu X., Hew C. L. 2002b; Transcription and identification of an envelope protein gene (p22) from shrimp white spot syndrome virus. J Gen Virol 83:471–477
    [Google Scholar]
  35. Zhang X., Huang C., Tang X., Zhuang Y., Hew C. L. 2004; Identification of structural proteins from shrimp white spot syndrome virus (WSSV) by 2DE-MS. Proteins 55:229–235 [CrossRef]
    [Google Scholar]
  36. Zhu Y., Xie X., Yang F. 2005; Transcription and identification of a novel envelope protein (VP124) gene of shrimp white spot syndrome virus. Virus Res 113:100–106 [CrossRef]
    [Google Scholar]
  37. Zhu Y.-B., Li H.-Y., Yang F. 2006; Identification of an envelope protein (VP39) gene from shrimp white spot syndrome virus. Arch Virol 151:71–82 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81730-0
Loading
/content/journal/jgv/10.1099/vir.0.81730-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed