1887

Abstract

Genomic comparison of (NeseNPV) and (NeleNPV) showed that the hymenopteran baculoviruses had features in common and were distinct from other, fully sequenced lepidopteran and dipteran baculoviruses. Their genomes were small in size (86 462 and 81 755 bp, respectively), had low G+C contents (33.8 and 33.3 mol%, respectively) and contained fewer open reading frames (ORFs) (90 and 89, respectively) than other baculoviruses. They shared 69 ORFs (48.6 % mean amino acid identity overall), 43 of which were previously identified baculovirus homologues. The remaining shared ORFs could be common to other baculoviruses, but low amino acid identities precluded identifying them as such. Some may also be unique to hymenopteran baculoviruses. These included a trypsin-like protease, a zinc-finger protein, regulator of chromosome condensation proteins, a densovirus capsid-like protein and a phosphotransferase. Structural analysis, the presence of conserved domains and phylogenetic studies suggested that some of these ORFs may be functional and could have been transferred horizontally from an insect host. ORFs found only in NeseNPV and NeleNPV may play a role in host specificity and/or tissue tropism, as hymenopteran baculoviruses are restricted to the midgut. The genomes were basically collinear, but contained non-syntenic regions (NSRs) with large numbers of repeats between their and genes. They differed from each other in the number of ORFs and the G+C content of their NSRs and the presence of homologous regions in the NeseNPV genome. NeleNPV also had a short inversion relative to NeseNPV. NeseNPV contained 21 ORFs not found in NeleNPV and NeleNPV had 20 ORFs not found in NeseNPV.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81727-0
2006-06-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/6/1477.html?itemId=/content/journal/jgv/10.1099/vir.0.81727-0&mimeType=html&fmt=ahah

References

  1. Afonso, C. L., Tulman, E. R., Lu, Z., Balinsky, C. A., Moser, B. A., Becnel, J. J., Rock, D. L. & Kutish, G. F. ( 2001; ). Genome sequence of a baculovirus pathogenic for Culex nigripalpus. J Virol 75, 11157–11165.[CrossRef]
    [Google Scholar]
  2. Ahrens, C. H., Russell, R. L. Q., Funk, C. J., Evans, J. T., Harwood, S. H. & Rohrmann, G. F. ( 1997; ). The sequence of the Orgyia pseudotsugata multinucleocapsid nuclear polyhedrosis virus genome. Virology 229, 381–399.[CrossRef]
    [Google Scholar]
  3. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  4. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  5. Bird, F. T. ( 1953; ). The use of a virus disease in the biological control of the European pine sawfly, Neodiprion sertifer (Geoffr.). Can Entomol 85, 437–446.[CrossRef]
    [Google Scholar]
  6. Bird, F. T. ( 1961; ). Transmission of some insect viruses with particular reference to ovarial transmission and its importance in the development of epizootics. J Insect Pathol 3, 352–380.
    [Google Scholar]
  7. Böhm, S., Frishman, D. & Mewes, H. W. ( 1997; ). Variations of the C2H2 zinc finger motif in the yeast genome and classification of yeast zinc finger proteins. Nucleic Acids Res 25, 2464–2469.[CrossRef]
    [Google Scholar]
  8. Brown, D. A. ( 1982; ). Two naturally occurring nuclear polyhedrosis virus variants of Neodiprion sertifer Geoffr. (Hymenoptera; Diprionidae). Appl Environ Microbiol 43, 65–69.
    [Google Scholar]
  9. Büchen-Osmond, C. (editor) ( 2003; ). Densovirus. In ICTVdB – The Universal Virus Database, version 3, chapter 00.050.2.01. ICTVdB Management, The Earth Institute and Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA. http://www.ncbi.nlm.nih.gov/ICTVdb/ICTVdb/index.htm
  10. Cunningham, J. C., DeGroot, P. & McPhee, J. R. ( 1984; ). Lecontvirus: a viral insecticide for control of redheaded pine sawfly, Neodiprion lecontei. In Biological Control Methods (Technical Note No. 2). Sault Ste Marie, ON: Canadian Forest Service.
  11. De Groot, P. & Cunningham, J. C. ( 1983; ). Aerial Spray Trials with a Baculovirus to Control Red Headed Pine Sawfly in Ontario in 1979 and 1980 (Canadian Forest Service Information Report FPM-X-63). Sault Ste Marie, ON: Canadian Forest Service.
  12. DeLano, W. L. ( 2002; ). The PyMOL molecular graphics system. San Carlos, CA: DeLano Scientific. http://pymol.sourceforge.net/
  13. Desiere, F., Mahanivong, C., Hillier, A. J., Chandry, P. S., Davidson, B. E. & Brüssow, H. ( 2001; ). Comparative genomics of lactococcal phages: insight from the complete genome sequence of Lactococcus lactis phage BK5-T. Virology 283, 240–252.[CrossRef]
    [Google Scholar]
  14. Federici, B. A. ( 1997; ). Baculovirus pathogenesis. In The Baculoviruses, pp. 33–60. Edited by L. K. Miller. New York: Plenum.
  15. Fédière, G., Li, Y., Zádori, Z., Szelei, J. & Tijssen, P. ( 2002; ). Genome organization of Casphalia extranea densovirus, a new Interavirus. Virology 292, 299–308.[CrossRef]
    [Google Scholar]
  16. Garcia-Maruniak, A., Maruniak, J. E., Zanotto, P. M. A., Doumbouya, A. E., Liu, J.-C., Merritt, T. M. & Lanoie, J. S. ( 2004; ). Sequence analysis of the genome of the Neodiprion sertifer nucleopolyhedrovirus. J Virol 78, 7036–7051.[CrossRef]
    [Google Scholar]
  17. Guindon, S. & Gascuel, O. ( 2003; ). A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52, 696–704.[CrossRef]
    [Google Scholar]
  18. Harrison, R. L. & Bonning, B. C. ( 2003; ). Comparative analysis of the genomes of Rachiplusia ou and Autographa californica multiple nucleopolyhedroviruses. J Gen Virol 84, 1827–1842.[CrossRef]
    [Google Scholar]
  19. Herniou, E. A., Luque, T., Chen, X., Vlak, J. M., Winstanley, D., Cory, J. S. & O'Reilly, D. R. ( 2001; ). Use of whole genome sequence data to infer baculovirus phylogeny. J Virol 75, 8117–8126.[CrossRef]
    [Google Scholar]
  20. Herniou, E. A., Olszewski, J. A., Cory, J. S. & O'Reilly, D. R. ( 2003; ). The genome sequence and evolution of baculoviruses. Annu Rev Entomol 48, 211–234.[CrossRef]
    [Google Scholar]
  21. Herniou, E., Olszewski, J. A., O'Reilly, D. R. & Cory, J. S. ( 2004; ). Ancient coevolution of baculoviruses and their insect hosts. J Virol 78, 3244–3251.[CrossRef]
    [Google Scholar]
  22. Huang, S., Mayeda, A., Krainer, A. R. & Spector, D. L. ( 1997; ). RCC1 and nuclear organization. Mol Biol Cell 8, 1143–1157.[CrossRef]
    [Google Scholar]
  23. Huang, Q., Deveraux, Q. L., Maeda, S., Salvesen, G. S., Stennicke, H. R., Hammock, B. D. & Reed, J. C. ( 2000; ). Evolutionary conservation of apoptosis mechanisms: lepidopteran and baculoviral inhibitor of apoptosis proteins are inhibitors of mammalian caspase-9. Proc Natl Acad Sci U S A 97, 1427–1432.[CrossRef]
    [Google Scholar]
  24. Huber, J. ( 1986; ). Use of baculoviruses in pest management programs. In The Biology of Baculoviruses, vol. II, Practical Application for Insect Control, pp. 182–197. Edited by R. R. Grandados & B. A. Federici. Boca Raton, FL: CRC Press.
  25. Hughes, A. L. & Friedman, R. ( 2003; ). Genome-wide survey for genes horizontally transferred from cellular organisms to baculoviruses. Mol Biol Evol 20, 979–987.[CrossRef]
    [Google Scholar]
  26. Jones, D. T., Taylor, W. R. & Thornton, J. M. ( 1992; ). The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8, 275–282.
    [Google Scholar]
  27. Knight, R. D. & Shimeld, S. M. ( 2001; ). Identification of conserved C2H2 zinc-finger gene families in the Bilateria. Genome Biol 2, research0016.1–0016.8. doi:10.1186/gb-2001-2-5-research0016
    [Google Scholar]
  28. Kuzio, J., Pearson, M. N., Harwood, S. H., Funk, C. J., Evans, J. T., Slavicek, J. M. & Rohrmann, G. F. ( 1999; ). Sequence and analysis of the genome of a baculovirus pathogenic for Lymantria dispar. Virology 253, 17–34.[CrossRef]
    [Google Scholar]
  29. Lange, M. & Jehle, J. A. ( 2003; ). The genome of the Cryptophlebia leucotreta granulovirus. Virology 317, 220–236.[CrossRef]
    [Google Scholar]
  30. Lauzon, H. A. M., Lucarotti, C. J., Krell, P. J., Feng, Q., Retnakaran, A. & Arif, B. M. ( 2004; ). Sequence and organization of the Neodiprion lecontei nucleopolyhedrovirus genome. J Virol 78, 7023–7035.[CrossRef]
    [Google Scholar]
  31. Lauzon, H. A. M., Jamieson, P. B., Krell, P. J. & Arif, B. M. ( 2005; ). Gene organization and sequencing of the Choristoneura fumiferana defective nucleopolyhedrovirus genome. J Gen Virol 86, 945–961.[CrossRef]
    [Google Scholar]
  32. Lung, O. & Blissard, G. W. ( 2005; ). A cellular Drosophila melanogaster protein with similarity to baculovirus F envelope fusion proteins. J Virol 79, 7979–7989.[CrossRef]
    [Google Scholar]
  33. Mangor, J. T., Monsma, S. A., Johnson, M. C. & Blissard, G. W. ( 2001; ). A GP64-null baculovirus pseudotyped with vesicular stomatitis virus G protein. J Virol 75, 2544–2556.[CrossRef]
    [Google Scholar]
  34. Marquart, M., Walter, J., Deisenhofer, J., Bode, W. & Huber, R. ( 1983; ). The geometry of the reactive site and of the peptide groups in trypsin, trypsinogen and its complexes with inhibitors. Acta Crystallogr Sect B Struct Sci 39, 480–490.[CrossRef]
    [Google Scholar]
  35. Monsma, S. A., Oomens, A. G. P. & Blissard, G. W. ( 1996; ). The GP64 envelope fusion protein is an essential baculovirus protein required for cell-to-cell transmission of infection. J Virol 70, 4607–4616.
    [Google Scholar]
  36. Ohtsubo, M., Okazaki, H. & Nishimoto, T. ( 1989; ). The RCC1 protein, a regulator for the onset of chromosome condensation locates in the nucleus and binds to DNA. J Cell Biol 109, 1389–1397.[CrossRef]
    [Google Scholar]
  37. Ohtsubo, M., Yoshida, T., Seino, H., Nishitani, H., Clark, K. L., Sprague, G. F., Jr, Frasch, M. & Nishimoto, T. ( 1991; ). Mutation of the hamster cell cycle gene RCC1 is complemented by the homologous genes of Drosophila and S. cerevisiae. EMBO J 10, 1265–1273.
    [Google Scholar]
  38. Pearson, M. N. & Rohrmann, G. F. ( 2002; ). Transfer, incorporation, and substitution of envelope fusion proteins among members of the Baculoviridae, Orthomyxoviridae, and Metaviridae (insect retrovirus) families. J Virol 76, 5301–5304.[CrossRef]
    [Google Scholar]
  39. Pearson, M. N., Groten, C. & Rohrmann, G. F. ( 2000; ). Identification of the Lymantria dispar nucleopolyhedrovirus envelope fusion protein provides evidence for a phylogenetic division of the Baculoviridae. J Virol 74, 6126–6131.[CrossRef]
    [Google Scholar]
  40. Pearson, M. N., Russell, R. L. Q. & Rohrmann, G. F. ( 2001; ). Characterization of a baculovirus-encoded protein that is associated with infected-cell membranes and budded virions. Virology 291, 22–31.[CrossRef]
    [Google Scholar]
  41. Purcell, W. P. & Singer, J. A. ( 1967; ). A brief review and table of semiempirical parameters used in the Hückel molecular orbital method. J Chem Eng Data 12, 235–246.[CrossRef]
    [Google Scholar]
  42. Rohrmann, G. F. & Karplus, P. A. ( 2001; ). Relatedness of baculovirus and gypsy retrotransposon envelope proteins. BMC Evol Biol 1, 1.[CrossRef]
    [Google Scholar]
  43. Ross, J., Jiang, H., Kanost, M. R. & Wang, Y. ( 2003; ). Serine proteases and their homologs in the Drosophila melanogaster genome: an initial analysis of sequence conservation and phylogenetic relationships. Gene 304, 117–131.[CrossRef]
    [Google Scholar]
  44. Schultz, J., Milpetz, F., Bork, P. & Ponting, C. P. ( 1998; ). smart, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A 95, 5857–5864.[CrossRef]
    [Google Scholar]
  45. Schultz, J., Copley, R. R., Doerks, T., Ponting, C. P. & Bork, P. ( 2000; ). smart: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res 28, 231–234.[CrossRef]
    [Google Scholar]
  46. Spinelli, S. L., Malik, H. S., Consaul, S. A. & Phizicky, E. M. ( 1998; ). A functional homolog of a yeast tRNA splicing enzyme is conserved in higher eukaryotes and in Escherichia coli. Proc Natl Acad Sci U S A 95, 14136–14141.[CrossRef]
    [Google Scholar]
  47. Spinelli, S. L., Kierzek, R., Turner, D. H. & Phizicky, E. M. ( 1999; ). Transient ADP-ribosylation of a 2′-phosphate implicated in its removal from ligated tRNA during splicing in yeast. J Biol Chem 274, 2637–2644.[CrossRef]
    [Google Scholar]
  48. Swofford, D. L. ( 2003; ). paup*. Phylogenetic Analysis Using Parsimony (*and other methods), version 4. Sunderland, MA: Sinauer Associates.
  49. Volkman, L. E., Blissard, G. W., Friesen, P., Keddie, B. A., Possee, R. & Theilmann, D. A. ( 1995; ). Family Baculoviridae. In Virus Taxonomy: Sixth Report of the International Committee on Taxonomy of Viruses, pp. 104–113. Edited by F. A. Murphy, C. M. Fauquet, D. H. L. Bishop, S. A. Ghabrial, A. W. Jarvis, G. P. Martelli, M. A. Mayo & M. D. Summers. New York: Springer.
  50. Zhang, C.-X., Ma, X.-C. & Guo, Z.-J. ( 2005; ). Comparison of the complete genome sequence between C1 and G4 isolates of the Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus. Virology 333, 190–199.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81727-0
Loading
/content/journal/jgv/10.1099/vir.0.81727-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error