1887

Abstract

The ability to evade or suppress the host's immune response is a property of many viruses, indicating that this provides an advantage for the pathogen to spread efficiently or even to establish a persistent infection. The type and complexity of its genome and cell tropism but also its preferred type of host interaction are important parameters which define the strategy of a given virus to modulate the immune system in an optimal manner. Because they take a central position in any antiviral defence, the activation and function of T cells are the predominant target of many viral immunosuppressive regimens. In this review, two different strategies whereby this could be achieved are summarized. Retroviruses can infect professional antigen-presenting cells and impair their maturation and functional properties. This coincides with differentiation and expansion of silencing T cells referred to as regulatory T cells with suppressive activity, mainly to CD8 effector T cells. The second concept, outlined for measles virus, is a direct, contact-mediated silencing of T cells which acquire a transient paralytic state.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81713-0
2006-06-01
2021-05-09
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/6/1423.html?itemId=/content/journal/jgv/10.1099/vir.0.81713-0&mimeType=html&fmt=ahah

References

  1. Aandahl E. M., Michaelsson J., Moretto W. J., Hecht F. M., Nixon D. F. 2004; Human CD4+ CD25+ regulatory T cells control T-cell responses to human immunodeficiency virus and cytomegalovirus antigens. J Virol 78:2454–2459 [CrossRef]
    [Google Scholar]
  2. Addae M. M., Komada Y., Zhang X. L., Sakurai M. 1995; Immunological unresponsiveness and apoptotic cell death of T cells in measles virus infection. Acta Paediatr Jpn 37:308–314 [CrossRef]
    [Google Scholar]
  3. Addae M. M., Komada Y., Taniguchi K., Kamiya T., Osei-Kwasi M., Akanmori B. D., Nkrumah F. K. 1998; Surface marker patterns of T cells and expression of interleukin-2 receptor in measles infection. Acta Paediatr Jpn 40:7–13
    [Google Scholar]
  4. Andersson J., Boasso A., Nilsson J., Zhang R., Shire N. J., Lindback S., Shearer G. M., Chougnet C. A. 2005; The prevalence of regulatory T cells in lymphoid tissue is correlated with viral load in HIV-infected patients. J Immunol 174:3143–3147 [CrossRef]
    [Google Scholar]
  5. Appay V., Nixon D. F., Donahoe S. M. & 13 other authors 2000; HIV-specific CD8+ T cells produce antiviral cytokines but are impaired in cytolytic function. J Exp Med 192:63–75 [CrossRef]
    [Google Scholar]
  6. Arneborn P., Biberfeld G. 1983; T-lymphocyte subpopulations in relation to immunosuppression in measles and varicella. Infect Immun 39:29–37
    [Google Scholar]
  7. Astier A., Trescol-Biemont M. C., Azocar O., Lamouille B., Rabourdin-Combe C. 2000; Cutting edge: CD46, a new costimulatory molecule for T cells, that induces p120CBL and LAT phosphorylation. J Immunol 164:6091–6095 [CrossRef]
    [Google Scholar]
  8. Auwaerter P. G., Kaneshima H., McCune J. M., Wiegand G., Griffin D. E. 1996; Measles virus infection of thymic epithelium in the SCID-hu mouse leads to thymocyte apoptosis. J Virol 70:3734–3740
    [Google Scholar]
  9. Aversa G., Carballido J., Punnonen J., Chang C. C., Hauser T., Cocks B. G., De Vries J. E. 1997; SLAM and its role in T cell activation and Th cell responses. Immunol Cell Biol 75:202–205 [CrossRef]
    [Google Scholar]
  10. Avota E., Avots A., Niewiesk S., Kane L. P., Bommhardt U., ter Meulen V., Schneider-Schaulies S. 2001; Disruption of Akt kinase activation is important for immunosuppression induced by measles virus. Nat Med 7:725–731 [CrossRef]
    [Google Scholar]
  11. Avota E., Muller N., Klett M., Schneider-Schaulies S. 2004; Measles virus interacts with and alters signal transduction in T-cell lipid rafts. J Virol 78:9552–9559 [CrossRef]
    [Google Scholar]
  12. Beilharz M. W., Sammels L. M., Paun A., Shaw K., Van Eeden P., Watson M. W., Ashdown M. L. 2004; Timed ablation of regulatory CD4+ T cells can prevent murine AIDS progression. J Immunol 172:4917–4925 [CrossRef]
    [Google Scholar]
  13. Bieback K., Lien E., Klagge I. M. & 7 other authors 2002; Hemagglutinin protein of wild-type measles virus activates toll-like receptor 2 signaling. J Virol 76:8729–8736 [CrossRef]
    [Google Scholar]
  14. Black F. L., Berman L. L., Borgoño J. M. & 14 other authors 1986; Geographic variation in infant loss of maternal measles antibody and in prevalence of rubella antibody. Am J Epidemiol 124:442–452
    [Google Scholar]
  15. Black J. B., Durigon E., Kite-Powell K., de Souza L., Curli S. P., Afonso A. M., Theobaldo M., Pellett P. E. 1996; Seroconversion to human herpesvirus 6 and human herpesvirus 7 among Brazilian children with clinical diagnoses of measles or rubella. Clin Infect Dis 23:1156–1158 [CrossRef]
    [Google Scholar]
  16. Borrow P., Oldstone M. B. 1995; Measles virus–mononuclear cell interactions. Curr Top Microbiol Immunol 191:85–100
    [Google Scholar]
  17. Broliden K., Abreu E. R., Arneborn M., Bottiger M. 1998; Immunity to mumps before and after MMR vaccination at 12 years of age in the first generation offered the two-dose immunization programme. Vaccine 16:323–327 [CrossRef]
    [Google Scholar]
  18. Cacciotti P., Barbone D., Porta C., Altomare D. A., Testa J. R., Mutti L., Gaudino G. 2005; SV40-dependent AKT activity drives mesothelial cell transformation after asbestos exposure. Cancer Res 65:5256–5262 [CrossRef]
    [Google Scholar]
  19. Casali P., Rice G. P., Oldstone M. B. 1984; Viruses disrupt functions of human lymphocytes. Effects of measles virus and influenza virus on lymphocyte-mediated killing and antibody production. J Exp Med 159:1322–1337 [CrossRef]
    [Google Scholar]
  20. Ceglowski W. S., Friedman H. 1968; Immunosuppression by leukemia viruses. I. Effect of Friend disease virus on cellular and humoral hemolysin responses of mice to a primary immunization with sheep erythrocytes. J Immunol 101:594–604
    [Google Scholar]
  21. Clements C. J., Cutts F. T. 1995; The epidemiology of measles: thirty years of vaccination. Curr Top Microbiol Immunol 191:13–33
    [Google Scholar]
  22. Clerici M., Shearer G. M. 1993; A TH1→TH2 switch is a critical step in the etiology of HIV infection. Immunol Today 14:107–111 [CrossRef]
    [Google Scholar]
  23. Dawson C. W., Tramountanis G., Eliopoulos A. G., Young L. S. 2003; Epstein-Barr virus latent membrane protein 1 (LMP1) activates the phosphatidylinositol 3-kinase/Akt pathway to promote cell survival and induce actin filament remodeling. J Biol Chem 278:3694–3704 [CrossRef]
    [Google Scholar]
  24. de Witte L., Abt M., Schneider-Schaulies S., van Kooyk Y., Geijtenbeek T. B. H. 2006; Measles virus targets DC-SIGN to enhance dendritic cell infection. J Virol 80:3477–3486 [CrossRef]
    [Google Scholar]
  25. Dittmer U., Luke W., Stahl-Hennig C., Coulibaly C., Petry H., Bodemer W., Hunsmann G., Voss G. 1994; Early helper T-cell dysfunction in simian immunodeficiency virus but not in human immunodeficiency virus type-2-infected macaques. J Med Primatol 23:298–303 [CrossRef]
    [Google Scholar]
  26. Dittmer U., Race B., Peterson K. E., Stromnes I. M., Messer R. J., Hasenkrug K. J. 2002; Essential roles for CD8+ T cells and gamma interferon in protection of mice against retrovirus-induced immunosuppression. J Virol 76:450–454 [CrossRef]
    [Google Scholar]
  27. Dittmer U., He H., Messer R. J. & 11 other authors 2004; Functional impairment of CD8+ T cells by regulatory T cells during persistent retroviral infection. Immunity 20:293–303 [CrossRef]
    [Google Scholar]
  28. Dollimore N., Cutts F., Binka F. N., Ross D. A., Morris S. S., Smith P. G. 1997; Measles incidence, case fatality, and delayed mortality in children with or without vitamin A supplementation in rural Ghana. Am J Epidemiol 146:646–654 [CrossRef]
    [Google Scholar]
  29. Dorig R. E., Marcil A., Chopra A., Richardson C. D. 1993; The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 75:295–305 [CrossRef]
    [Google Scholar]
  30. Draenert R., Verrill C. L., Tang Y. & 9 other authors 2004; Persistent recognition of autologous virus by high-avidity CD8 T cells in chronic, progressive human immunodeficiency virus type 1 infection. J Virol 78:630–641 [CrossRef]
    [Google Scholar]
  31. Dunster L. M., Schneider-Schaulies J., Dehoff M. H., Holers V. M., Schwartz-Albiez R., ter Meulen V. 1995; Moesin, and not the murine functional homologue (Crry/p65) of human membrane cofactor protein (CD46), is involved in the entry of measles virus (strain Edmonston) into susceptible murine cell lines. J Gen Virol 76:2085–2089 [CrossRef]
    [Google Scholar]
  32. Engelking O., Fedorov L. M., Lilischkis R., ter Meulen V., Schneider-Schaulies S. 1999; Measles virus-induced immunosuppression in vitro is associated with deregulation of G1 cell cycle control proteins. J Gen Virol 80:1599–1608
    [Google Scholar]
  33. Ericsson A., Arya A., Agace W. 2004; CCL25 enhances CD103-mediated lymphocyte adhesion to E-cadherin. Ann N Y Acad Sci 1029:334–336 [CrossRef]
    [Google Scholar]
  34. Erlenhoefer C., Wurzer W. J., Löffler S., Schneider-Schaulies S., ter Meulen V., Schneider-Schaulies J. 2001; CD150 (SLAM) is a receptor for measles virus but is not involved in viral contact-mediated proliferation inhibition. J Virol 75:4499–4505 [CrossRef]
    [Google Scholar]
  35. Erlenhöfer C., Duprex W. P., Rima B. K., ter Meulen V., Schneider-Schaulies J. 2002; Analysis of receptor (CD46, CD150) usage by measles virus. J Gen Virol 83:1431–1436
    [Google Scholar]
  36. Esolen L. M., Ward B. J., Moench T. R., Griffin D. E. 1993; Infection of monocytes during measles. J Infect Dis 168:47–52 [CrossRef]
    [Google Scholar]
  37. Fantuzzi L., Purificato C., Donato K., Belardelli F., Gessani S. 2004; Human immunodeficiency virus type 1 gp120 induces abnormal maturation and functional alterations of dendritic cells: a novel mechanism for AIDS pathogenesis. J Virol 78:9763–9772 [CrossRef]
    [Google Scholar]
  38. Fugier-Vivier I., Servet-Delprat C., Rivailler P., Rissoan M. C., Liu Y. J., Rabourdin-Combe C. 1997; Measles virus suppresses cell-mediated immunity by interfering with the survival and functions of dendritic and T cells. J Exp Med 186:813–823 [CrossRef]
    [Google Scholar]
  39. Fujinami R. S., Sun X., Howell J. M., Jenkin J. C., Burns J. B. 1998; Modulation of immune system function by measles virus infection: role of soluble factor and direct infection. J Virol 72:9421–9427
    [Google Scholar]
  40. Geijtenbeek T. B. H., van Kooyk Y. 2003; Pathogens target DC-SIGN to influence their fate: DC-SIGN functions as a pathogen receptor with broad specificity. APMIS 111:698–714 [CrossRef]
    [Google Scholar]
  41. Gougeon M. L. 2003; Apoptosis as an HIV strategy to escape immune attack. Nat Rev Immunol 3:392–404 [CrossRef]
    [Google Scholar]
  42. Goulder P. J., Watkins D. I. 2004; HIV and SIV CTL escape: implications for vaccine design. Nat Rev Immunol 4:630–640 [CrossRef]
    [Google Scholar]
  43. Granelli-Piperno A., Golebiowska A., Trumpfheller C., Siegal F. P., Steinman R. M. 2004; HIV-1-infected monocyte-derived dendritic cells do not undergo maturation but can elicit IL-10 production and T cell regulation. Proc Natl Acad Sci U S A 101:7669–7674 [CrossRef]
    [Google Scholar]
  44. Griffin D. E. 1995; Immune responses during measles virus infection. Curr Top Microbiol Immunol 191:117–134
    [Google Scholar]
  45. Griffin D. E., Ward B. J. 1993; Differential CD4 T cell activation in measles. J Infect Dis 168:275–281 [CrossRef]
    [Google Scholar]
  46. Griffin D. E., Ward B. J., Jauregui E., Johnson R. T., Vaisberg A. 1989; Immune activation in measles. N Engl J Med 320:1667–1672 [CrossRef]
    [Google Scholar]
  47. Grosjean I., Caux C., Bella C., Berger I., Wild F., Banchereau J., Kaiserlian D. 1997; Measles virus infects human dendritic cells and blocks their allostimulatory properties for CD4+ T cells. J Exp Med 186:801–812 [CrossRef]
    [Google Scholar]
  48. Hahm B., Arbour N., Naniche D., Homann D., Manchester M., Oldstone M. B. 2003; Measles virus infects and suppresses proliferation of T lymphocytes from transgenic mice bearing human signaling lymphocytic activation molecule. J Virol 77:3505–3515 [CrossRef]
    [Google Scholar]
  49. Hahm B., Arbour N., Oldstone M. B. 2004; Measles virus interacts with human SLAM receptor on dendritic cells to cause immunosuppression. Virology 323:292–302 [CrossRef]
    [Google Scholar]
  50. Hahm B., Trifilo M. J., Zuniga E. I., Oldstone M. B. 2005; Viruses evade the immune system through type I interferon-mediated STAT2-dependent, but STAT1-independent, signaling. Immunity 22:247–257 [CrossRef]
    [Google Scholar]
  51. Harrowe G., Mitsuhashi M., Payan D. G. 1990; Measles virus–substance P receptor interactions. Possible novel mechanism of viral fusion. J Clin Invest 85:1324–1327 [CrossRef]
    [Google Scholar]
  52. Harrowe G., Sudduth-Klinger J., Payan D. G. 1992; Measles virus–substance P receptor interaction: Jurkat lymphocytes transfected with substance P receptor cDNA enhance measles virus fusion and replication. Cell Mol Neurobiol 12:397–409 [CrossRef]
    [Google Scholar]
  53. Hasenkrug K. J., Chesebro B. 1997; Immunity to retroviral infection: the Friend virus model. Proc Natl Acad Sci U S A 94:7811–7816 [CrossRef]
    [Google Scholar]
  54. He H., Messer R. J., Sakaguchi S., Yang G. J., Robertson S. J., Hasenkrug K. J. 2004; Reduction of retrovirus-induced immunosuppression by in vivo modulation of T cells during acute infection. J Virol 78:11641–11647 [CrossRef]
    [Google Scholar]
  55. Heaney J., Barrett T., Cosby S. L. 2002; Inhibition of in vitro leukocyte proliferation by morbilliviruses. J Virol 76:3579–3584 [CrossRef]
    [Google Scholar]
  56. Hess C., Altfeld M., Thomas S. Y. & 9 other authors 2004; HIV-1 specific CD8+ T cells with an effector phenotype and control of viral replication. Lancet 363:863–866 [CrossRef]
    [Google Scholar]
  57. Hoatlin M. E., Kabat D. 1995; Host-range control of a retroviral disease: Friend erythroleukemia. Trends Microbiol 3:51–57 [CrossRef]
    [Google Scholar]
  58. Hsu E. C., Iorio C., Sarangi F., Khine A. A., Richardson C. D. 2001; CDw150 (SLAM) is a receptor for a lymphotropic strain of measles virus and may account for the immunosuppressive properties of this virus. Virology 279:9–21 [CrossRef]
    [Google Scholar]
  59. Iwashiro M., Messer R. J., Peterson K. E., Stromnes I. M., Sugie T., Hasenkrug K. J. 2001; Immunosuppression by CD4+ regulatory T cells induced by chronic retroviral infection. Proc Natl Acad Sci U S A 98:9226–9230 [CrossRef]
    [Google Scholar]
  60. Johnson W. E., Desrosiers R. C. 2002; Viral persistence: HIV's strategies of immune system evasion. Annu Rev Med 53:499–518 [CrossRef]
    [Google Scholar]
  61. Johnson R. T., Griffin D. E., Hirsch R., Vaisberg A. 1983; Measles encephalitis. Clin Exp Neurol 19:13–16
    [Google Scholar]
  62. Karp C. L., Wysocka M., Wahl L. M., Ahearn J. M., Cuomo P. J., Sherry B., Trinchieri G., Griffin D. E. 1996; Mechanism of suppression of cell-mediated immunity by measles virus. Science 273:228–231 [CrossRef]
    [Google Scholar]
  63. Katz M. 1995; Clinical spectrum of measles. Curr Top Microbiol Immunol 191:1–12
    [Google Scholar]
  64. Kemper C., Chan A. C., Green J. M., Brett K. A., Murphy K. M., Atkinson J. P. 2003; Activation of human CD4+ cells with CD3 and CD46 induces a T-regulatory cell 1 phenotype. Nature 421:388–392 [CrossRef]
    [Google Scholar]
  65. Kemper C., Verbsky J. W., Price J. D., Atkinson J. P. 2005; T-cell stimulation and regulation: with complements from CD46. Immunol Res 32:31–44 [CrossRef]
    [Google Scholar]
  66. Kiel M. J., Yilmaz O. H., Iwashita T., Yilmaz O. H., Terhorst C., Morrison S. J. 2005; SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121:1109–1121 [CrossRef]
    [Google Scholar]
  67. Kinter A. L., Hennessey M., Bell A. & 8 other authors 2004; CD25+CD4+ regulatory T cells from the peripheral blood of asymptomatic HIV-infected individuals regulate CD4+ and CD8+ HIV-specific T cell immune responses in vitro and are associated with favorable clinical markers of disease status. J Exp Med 200:331–343 [CrossRef]
    [Google Scholar]
  68. Kobune F., Takahashi H., Terao K. & 7 other authors 1996; Nonhuman primate models of measles. Lab Anim Sci 46:315–320
    [Google Scholar]
  69. Koibuchi T., Allen T. M., Lichterfeld M., Mui S. K., O'Sullivan K. M., Trocha A., Kalams S. A., Johnson R. P., Walker B. D. 2005; Limited sequence evolution within persistently targeted CD8 epitopes in chronic human immunodeficiency virus type 1 infection. J Virol 79:8171–8181 [CrossRef]
    [Google Scholar]
  70. Kraft A. R. M., Arndt T., Hasenkrug K. J., Dittmer U. 2005; Effective treatment of retrovirus-induced suppression of antibody responses with CpG oligodeoxynucleotides. J Gen Virol 86:3365–3368 [CrossRef]
    [Google Scholar]
  71. Krathwohl M. D., Schacker T. W., Anderson J. L. 2006; Abnormal presence of semimature dendritic cells that induce regulatory T cells in HIV-infected subjects. J Infect Dis 193:494–504 [CrossRef]
    [Google Scholar]
  72. Kurt-Jones E. A., Popova L., Kwinn L. & 8 other authors 2000; Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol 1:398–401 [CrossRef]
    [Google Scholar]
  73. Laine D., Trescol-Biemont M. C., Longhi S. & 8 other authors 2003; Measles virus (MV) nucleoprotein binds to a novel cell surface receptor distinct from Fc γ RII via its C-terminal domain: role in MV-induced immunosuppression. J Virol 77:11332–11346 [CrossRef]
    [Google Scholar]
  74. Laine D., Bourhis J. M., Longhi S., Flacher M., Cassard L., Canard B., Sautès-Fridman C., Rabourdin-Combe C., Valentin H. 2005; Measles virus nucleoprotein induces cell-proliferation arrest and apoptosis through NTAIL–NR and NCORE–Fc γ RIIB1 interactions, respectively. J Gen Virol 86:1771–1784 [CrossRef]
    [Google Scholar]
  75. Lennon J. L., Black F. L. 1986; Maternally derived measles immunity in era of vaccine-protected mothers. J Pediatr 108:671–676 [CrossRef]
    [Google Scholar]
  76. Lichterfeld M., Kaufmann D. E., Yu X. G. & 12 other authors 2004; Loss of HIV-1-specific CD8+ T cell proliferation after acute HIV-1 infection and restoration by vaccine-induced HIV-1-specific CD4+ T cells. J Exp Med 200:701–712 [CrossRef]
    [Google Scholar]
  77. Lieberman J., Shankar P., Manjunath N., Andersson J. 2001; Dressed to kill? A review of why antiviral CD8 T lymphocytes fail to prevent progressive immunodeficiency in HIV-1 infection. Blood 98:1667–1677 [CrossRef]
    [Google Scholar]
  78. Majumder B., Janket M. L., Schafer E. A., Schaubert K., Huang X.-L., Kan-Mitchell J., Rinaldo C. R. Jr, Ayyavoo V. 2005; Human immunodeficiency virus type 1 Vpr impairs dendritic cell maturation and T-cell activation: implications for viral immune escape. J Virol 79:7990–8003 [CrossRef]
    [Google Scholar]
  79. Manchester M., Smith K. A., Eto D. S., Perkin H. B., Torbett B. E. 2002; Targeting and hematopoietic suppression of human CD34+ cells by measles virus. J Virol 76:6636–6642 [CrossRef]
    [Google Scholar]
  80. Marie J. C., Kehren J., Trescol-Biemont M. C. & 8 other authors 2001; Mechanism of measles virus-induced suppression of inflammatory immune responses. Immunity 14:69–79 [CrossRef]
    [Google Scholar]
  81. Marie J. C., Astier A. L., Rivailler P., Rabourdin-Combe C., Wild T. F., Horvat B. 2002; Linking innate and acquired immunity: divergent role of CD46 cytoplasmic domains in T cell induced inflammation. Nat Immunol 3:659–666
    [Google Scholar]
  82. Marie J. C., Saltel F., Escola J. M., Jurdic P., Wild T. F., Horvat B. 2004; Cell surface delivery of the measles virus nucleoprotein: a viral strategy to induce immunosuppression. J Virol 78:11952–11961 [CrossRef]
    [Google Scholar]
  83. McChesney M. B., Fujinami R. S., Lerche N. W., Marx P. A., Oldstone M. B. 1989; Virus-induced immunosuppression: infection of peripheral blood mononuclear cells and suppression of immunoglobulin synthesis during natural measles virus infection of rhesus monkeys. J Infect Dis 159:757–760 [CrossRef]
    [Google Scholar]
  84. Migueles S. A., Laborico A. C., Shupert W. L. & 11 other authors 2002; HIV-specific CD8+ T cell proliferation is coupled to perforin expression and is maintained in nonprogressors. Nat Immunol 3:1061–1068 [CrossRef]
    [Google Scholar]
  85. Mills K. H. G. 2004; Regulatory T cells: friend or foe in immunity to infection?. Nat Rev Immunol 4:841–855 [CrossRef]
    [Google Scholar]
  86. Minagawa H., Tanaka K., Ono N., Tatsuo H., Yanagi Y. 2001; Induction of the measles virus receptor SLAM (CD150) on monocytes. J Gen Virol 82:2913–2917
    [Google Scholar]
  87. Morrison R. P., Earl P. L., Nishio J., Lodmell D. L., Moss B., Chesebro B. 1987; Different H-2 subregions influence immunization against retrovirus and immunosuppression. Nature 329:729–732 [CrossRef]
    [Google Scholar]
  88. Moss W. J., Ryon J. J., Monze M., Griffin D. E. 2002; Differential regulation of interleukin (IL)-4, IL-5, and IL-10 during measles in Zambian children. J Infect Dis 186:879–887 [CrossRef]
    [Google Scholar]
  89. Mrkic B., Odermatt B., Klein M. A., Billeter M. A., Pavlovic J., Cattaneo R. 2000; Lymphatic dissemination and comparative pathology of recombinant measles viruses in genetically modified mice. J Virol 74:1364–1372 [CrossRef]
    [Google Scholar]
  90. Muthumani K., Hwang D. S., Choo A. Y., Mavilvahanan S., Dayes N. S., Thieu K. P., Weiner D. B. 2005; HIV-1 Vpr inhibits the maturation and activation of macrophages and dendritic cells in vitro. Int Immunol 17:103–116
    [Google Scholar]
  91. Nanan R., Chittka B., Hadam M., Kreth H. W. 1999; Measles virus infection causes transient depletion of activated T cells from peripheral circulation. J Clin Virol 12:201–210 [CrossRef]
    [Google Scholar]
  92. Naniche D., Varior-Krishnan G., Cervoni F., Wild T. F., Rossi B., Rabourdin-Combe C., Gerlier D. 1993; Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J Virol 67:6025–6032
    [Google Scholar]
  93. Naniche D., Reed S. I., Oldstone M. B. A. 1999; Cell cycle arrest during measles virus infection: a G0-like block leads to suppression of retinoblastoma protein expression. J Virol 73:1894–1901
    [Google Scholar]
  94. Naniche D., Yeh A., Eto D., Manchester M., Friedman R. M., Oldstone M. B. A. 2000; Evasion of host defenses by measles virus: wild-type measles virus infection interferes with induction of alpha/beta interferon production. J Virol 74:7478–7484 [CrossRef]
    [Google Scholar]
  95. Niewiesk S., Eisenhuth I., Fooks A., Clegg J. C., Schnorr J. J., Schneider-Schaulies S., ter Meulen V. 1997; Measles virus-induced immune suppression in the cotton rat ( Sigmodon hispidus ) model depends on viral glycoproteins. J Virol 71:7214–7219
    [Google Scholar]
  96. Niewiesk S., Ohnimus H., Schnorr J. J., Gotzelmann M., Schneider-Schaulies S., Jassoy C., ter Meulen V. 1999; Measles virus-induced immunosuppression in cotton rats is associated with cell cycle retardation in uninfected lymphocytes. J Gen Virol 80:2023–2029
    [Google Scholar]
  97. Nozawa Y., Ono N., Abe M., Sakuma H., Wakasa H. 1994; An immunohistochemical study of Warthin-Finkeldey cells in measles. Pathol Int 44:442–447 [CrossRef]
    [Google Scholar]
  98. O'Connor D., Friedrich T., Hughes A., Allen T. M., Watkins D. 2001; Understanding cytotoxic T-lymphocyte escape during simian immunodeficiency virus infection. Immunol Rev 183:115–126 [CrossRef]
    [Google Scholar]
  99. Ohgimoto S., Ohgimoto K., Niewiesk S. & 7 other authors 2001; The haemagglutinin protein is an important determinant of measles virus tropism for dendritic cells in vitro . J Gen Virol 82:1835–1844
    [Google Scholar]
  100. Ohno S., Ono N., Takeda M., Takeuchi K., Yanagi Y. 2004; Dissection of measles virus V protein in relation to its ability to block alpha/beta interferon signal transduction. J Gen Virol 85:2991–2999 [CrossRef]
    [Google Scholar]
  101. Okada H., Kobune F., Sato T. A., Kohama T., Takeuchi Y., Abe T., Takayama N., Tsuchiya T., Tashiro M. 2000; Extensive lymphopenia due to apoptosis of uninfected lymphocytes in acute measles patients. Arch Virol 145:905–920 [CrossRef]
    [Google Scholar]
  102. Okada H., Sato T. A., Katayama A. & 8 other authors 2001; Comparative analysis of host responses related to immunosuppression between measles patients and vaccine recipients with live attenuated measles vaccines. Arch Virol 146:859–874 [CrossRef]
    [Google Scholar]
  103. Ono N., Tatsuo H., Hidaka Y., Aoki T., Minagawa H., Yanagi Y. 2001; Measles viruses on throat swabs from measles patients use signaling lymphocytic activation molecule (CDw150) but not CD46 as a cellular receptor. J Virol 75:4399–4401 [CrossRef]
    [Google Scholar]
  104. Ostrowski M. A., Gu J. X., Kovacs C., Freedman J., Luscher M. A., MacDonald K. S. 2001; Quantitative and qualitative assessment of human immunodeficiency virus type 1 (HIV-1)-specific CD4+ T cell immunity to gag in HIV-1-infected individuals with differential disease progression: reciprocal interferon-gamma and interleukin-10 responses. J Infect Dis 184:1268–1278 [CrossRef]
    [Google Scholar]
  105. Palosaari H., Parisien J. P., Rodriguez J. J., Ulane C. M., Horvath C. M. 2003; STAT protein interference and suppression of cytokine signal transduction by measles virus V protein. J Virol 77:7635–7644 [CrossRef]
    [Google Scholar]
  106. Permar S. R., Moss W. J., Ryon J. J., Douek D. C., Monze M., Griffin D. E. 2003; Increased thymic output during acute measles virus infection. J Virol 77:7872–7879 [CrossRef]
    [Google Scholar]
  107. Peyerl F. W., Barouch D. H., Letvin N. L. 2004; Structural constraints on viral escape from HIV- and SIV-specific cytotoxic T-lymphocytes. Viral Immunol 17:144–151 [CrossRef]
    [Google Scholar]
  108. Pfeuffer J., Püschel K., ter Meulen V., Schneider-Schaulies J., Niewiesk S. 2003; Extent of measles virus spread and immune suppression differentiates between wild-type and vaccine strains in the cotton rat model ( Sigmodon hispidus ). J Virol 77:150–158 [CrossRef]
    [Google Scholar]
  109. Pollara G., Kwan A., Newton P. J., Handley M. E., Chain B. M., Katz D. R. 2005; Dendritic cells in viral pathogenesis: protective or defective?. Int J Exp Pathol 86:187–204 [CrossRef]
    [Google Scholar]
  110. Ravanel K., Castelle C., Defrance T., Wild T. F., Charron D., Lotteau V., Rabourdin-Combe C. 1997; Measles virus nucleocapsid protein binds to Fc γ RII and inhibits human B cell antibody production. J Exp Med 186:269–278 [CrossRef]
    [Google Scholar]
  111. Rosenberg E. S., Billingsley J. M., Caliendo A. M., Boswell S. L., Sax P. E., Kalams S. A., Walker B. D. 1997; Vigorous HIV-1-specific CD4+ T cell responses associated with control of viremia. Science 278:1447–1450 [CrossRef]
    [Google Scholar]
  112. Rosenberg E. S., LaRosa L., Flynn T., Robbins G., Walker B. D. 1999; Characterization of HIV-1-specific T-helper cells in acute and chronic infection. Immunol Lett 66:89–93 [CrossRef]
    [Google Scholar]
  113. Ryon J. J., Moss W. J., Monze M., Griffin D. E. 2002; Functional and phenotypic changes in circulating lymphocytes from hospitalized Zambian children with measles. Clin Diagn Lab Immunol 9:994–1003
    [Google Scholar]
  114. Sakaguchi S. 2003; Regulatory T cells: mediating compromises between host and parasite. Nat Immunol 4:10–11 [CrossRef]
    [Google Scholar]
  115. Sakaguchi S. 2005; Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 6:345–352
    [Google Scholar]
  116. Sanchez-Lanier M., Guerin P., McLaren L. C., Bankhurst A. D. 1988; Measles virus-induced suppression of lymphocyte proliferation. Cell Immunol 116:367–381 [CrossRef]
    [Google Scholar]
  117. Schlender J., Schnorr J. J., Spielhoffer P., Cathomen T., Cattaneo R., Billeter M. A., ter Meulen V., Schneider-Schaulies S. 1996; Interaction of measles virus glycoproteins with the surface of uninfected peripheral blood lymphocytes induces immunosuppression in vitro. Proc Natl Acad Sci U S A 93:13194–13199 [CrossRef]
    [Google Scholar]
  118. Schlender J., Walliser G., Fricke J., Conzelmann K. K. 2002; Respiratory syncytial virus fusion protein mediates inhibition of mitogen-induced T-cell proliferation by contact. J Virol 76:1163–1170 [CrossRef]
    [Google Scholar]
  119. Schneider U., von Messling V., Devaux P., Cattaneo R. 2002; Efficiency of measles virus entry and dissemination through different receptors. J Virol 76:7460–7467 [CrossRef]
    [Google Scholar]
  120. Schneider-Schaulies S., ter Meulen V. 2002; Measles virus and immunomodulation: molecular bases and perspectives. Expert Rev Mol Med 20021–18
    [Google Scholar]
  121. Schneider-Schaulies J., Dunster L. M., Schwartz-Albiez R., Krohne G., ter Meulen V. 1995; Physical association of moesin and CD46 as a receptor complex for measles virus. J Virol 69:2248–2256
    [Google Scholar]
  122. Schneider-Schaulies J., Schnorr J. J., Schlender J., Dunster L. M., Schneider-Schaulies S., ter Meulen V. 1996; Receptor (CD46) modulation and complement-mediated lysis of uninfected cells after contact with measles virus-infected cells. J Virol 70:255–263
    [Google Scholar]
  123. Schneider-Schaulies J., ter Meulen V., Schneider-Schaulies S. 2003a; Measles infection of the central nervous system. J Neurovirol 9:247–252 [CrossRef]
    [Google Scholar]
  124. Schneider-Schaulies S., Klagge I. M., ter Meulen V. 2003b; Dendritic cells and measles virus infection. Curr Top Microbiol Immunol 276:77–101
    [Google Scholar]
  125. Schnorr J. J., Dunster L. M., Nanan R., Schneider-Schaulies J., Schneider-Schaulies S., ter Meulen V. 1995; Measles virus-induced down-regulation of CD46 is associated with enhanced sensitivity to complement-mediated lysis of infected cells. Eur J Immunol 25:976–984 [CrossRef]
    [Google Scholar]
  126. Schnorr J. J., Seufert M., Schlender J., Borst J., Johnston I. C., ter Meulen V., Schneider-Schaulies S. 1997; Cell cycle arrest rather than apoptosis is associated with measles virus contact-mediated immunosuppression in vitro . J Gen Virol 78:3217–3226
    [Google Scholar]
  127. Servet-Delprat C., Vidalain P. O., Azocar O., Le Deist F., Fischer A., Rabourdin-Combe C. 2000; Consequences of Fas-mediated human dendritic cell apoptosis induced by measles virus. J Virol 74:4387–4393 [CrossRef]
    [Google Scholar]
  128. Sevilla N., Kunz S., Holz A., Lewicki H., Homann D., Yamada H., Campbell K. P., de La Torre J. C., Oldstone M. B. 2000; Immunosuppression and resultant viral persistence by specific viral targeting of dendritic cells. J Exp Med 192:1249–1260 [CrossRef]
    [Google Scholar]
  129. Sevilla N., Kunz S., McGavern D., Oldstone M. B. 2003; Infection of dendritic cells by lymphocytic choriomeningitis virus. Curr Top Microbiol Immunol 276:125–144
    [Google Scholar]
  130. Sevilla N., McGavern D. B., Teng C., Kunz S., Oldstone M. B. 2004; Viral targeting of hematopoietic progenitors and inhibition of DC maturation as a dual strategy for immune subversion. J Clin Invest 113:737–745 [CrossRef]
    [Google Scholar]
  131. Shaffer J. A., Bellini W. J., Rota P. A. 2003; The C protein of measles virus inhibits the type I interferon response. Virology 315:389–397 [CrossRef]
    [Google Scholar]
  132. Shimizu J., Yamazaki S., Takahashi T., Ishida Y., Sakaguchi S. 2002; Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol 3:135–142 [CrossRef]
    [Google Scholar]
  133. Shingai M., Inoue N., Okuno T. & 10 other authors 2005; Wild-type measles virus infection in human CD46/CD150-transgenic mice: CD11c-positive dendritic cells establish systemic viral infection. J Immunol 175:3252–3261 [CrossRef]
    [Google Scholar]
  134. Sidorenko S. P., Clark E. A. 2003; The dual-function CD150 receptor subfamily: the viral attraction. Nat Immunol 4:19–24 [CrossRef]
    [Google Scholar]
  135. Steinman R. M., Granelli-Piperno A., Pope M., Trumpfheller C., Ignatius R., Arrode G., Racz P., Tenner-Racz K. 2003; The interaction of immunodeficiency viruses with dendritic cells. Curr Top Microbiol Immunol 276:1–30
    [Google Scholar]
  136. Stephens G. L., McHugh R. S., Whitters M. J., Young D. A., Luxenberg D., Carreno M., Collins M., Shevach E. M. 2004; Engagement of glucocorticoid-induced TNFR family-related receptor on effector T cells by ligand mediates resistance to suppression by CD4+CD25+ T cells. J Immunol 173:5008–5020 [CrossRef]
    [Google Scholar]
  137. Stolte M., Haas L., Wamwayi H. M., Barrett T., Wohlsein P. 2002; Induction of apoptotic cellular death in lymphatic tissues of cattle experimentally infected with different strains of rinderpest virus. J Comp Pathol 127:14–21 [CrossRef]
    [Google Scholar]
  138. Suffia I., Reckling S. K., Salay G., Belkaid Y. 2005; A role for CD103 in the retention of CD4+CD25+ Treg and control of Leishmania major infection. J Immunol 174:5444–5455 [CrossRef]
    [Google Scholar]
  139. Sun X., Burns J. B., Howell J. M., Fujinami R. S. 1998; Suppression of antigen-specific T cell proliferation by measles virus infection: role of a soluble factor in suppression. Virology 246:24–33 [CrossRef]
    [Google Scholar]
  140. Tamashiro V. G., Perez H. H., Griffin D. E. 1987; Prospective study of the magnitude and duration of changes in tuberculin reactivity during uncomplicated and complicated measles. Pediatr Infect Dis J 6:451–454 [CrossRef]
    [Google Scholar]
  141. Tatsuo H., Yanagi Y. 2002; The morbillivirus receptor SLAM (CD150). Microbiol Immunol 46:135–142 [CrossRef]
    [Google Scholar]
  142. Tatsuo H., Ono N., Tanaka K., Yanagi Y. 2000; SLAM (CDw150) is a cellular receptor for measles virus. Nature 406:893–897 [CrossRef]
    [Google Scholar]
  143. tenOever B. R., Servant M. J., Grandvaux N., Lin R., Hiscott J. 2002; Recognition of the measles virus nucleocapsid as a mechanism of IRF-3 activation. J Virol 76:3659–3669 [CrossRef]
    [Google Scholar]
  144. Trimble L. A., Lieberman J. 1998; Circulating CD8 T lymphocytes in human immunodeficiency virus-infected individuals have impaired function and downmodulate CD3 ζ , the signaling chain of the T-cell receptor complex. Blood 91:585–594
    [Google Scholar]
  145. Vahlenkamp T. W., Tompkins M. B., Tompkins W. A. F. 2004; Feline immunodeficiency virus infection phenotypically and functionally activates immunosuppressive CD4+CD25+ T regulatory cells. J Immunol 172:4752–4761 [CrossRef]
    [Google Scholar]
  146. Valentin H., Azocar O., Horvat B., Williems R., Garrone R., Evlashev A., Toribio M. L., Rabourdin-Combe C. 1999; Measles virus infection induces terminal differentiation of human thymic epithelial cells. J Virol 73:2212–2221
    [Google Scholar]
  147. Valsamakis A., Auwaerter P. G., Rima B. K., Kaneshima H., Griffin D. E. 1999; Altered virulence of vaccine strains of measles virus after prolonged replication in human tissue. J Virol 73:8791–8797
    [Google Scholar]
  148. van Binnendijk R. S., van der Heijden R. W., Osterhaus A. D. 1995; Monkeys in measles research. Curr Top Microbiol Immunol 191:135–148
    [Google Scholar]
  149. van Kooyk Y., Geijtenbeek T. B. 2003; DC-SIGN: escape mechanism for pathogens. Nat Rev Immunol 3:697–709 [CrossRef]
    [Google Scholar]
  150. Vidalain P.-O., Azocar O., Lamouille B., Astier A., Rabourdin-Combe C., Servet-Delprat C. 2000; Measles virus induces functional TRAIL production by human dendritic cells. J Virol 74:556–559 [CrossRef]
    [Google Scholar]
  151. Vidalain P.-O., Azocar O., Rabourdin-Combe C., Servet-Delprat C. 2001; Measle virus-infected dendritic cells develop immunosuppressive and cytotoxic activities. Immunobiology 204:629–638 [CrossRef]
    [Google Scholar]
  152. Vlad G., Cortesini R., Suciu-Foca N. 2005; License to heal: bidirectional interaction of antigen-specific regulatory T cells and tolerogenic APC. J Immunol 174:5907–5914 [CrossRef]
    [Google Scholar]
  153. von Messling V., Milosevic D., Cattaneo R. 2004; Tropism illuminated: lymphocyte-based pathways blazed by lethal morbillivirus through the host immune system. Proc Natl Acad Sci U S A 101:14216–14221 [CrossRef]
    [Google Scholar]
  154. Ward B. J., Johnson R. T., Vaisberg A., Jauregui E., Griffin D. E. 1990; Spontaneous proliferation of peripheral mononuclear cells in natural measles virus infection: identification of dividing cells and correlation with mitogen responsiveness. Clin Immunol Immunopathol 55:315–326 [CrossRef]
    [Google Scholar]
  155. Ward B. J., Johnson R. T., Vaisberg A., Jauregui E., Griffin D. E. 1991; Cytokine production in vitro and the lymphoproliferative defect of natural measles virus infection. Clin Immunol Immunopathol 61:236–248 [CrossRef]
    [Google Scholar]
  156. Weidmann A., Maisner A., Garten W., Seufert M., ter Meulen V., Schneider-Schaulies S. 2000a; Proteolytic cleavage of the fusion protein but not membrane fusion is required for measles virus-induced immunosuppression in vitro. J Virol 74:1985–1993 [CrossRef]
    [Google Scholar]
  157. Weidmann A., Fischer C., Ohgimoto S., Ruth C., ter Meulen V., Schneider-Schaulies S. 2000b; Measles virus-induced immunosuppression in vitro is independent of complex glycosylation of viral glycoproteins and of hemifusion. J Virol 74:7548–7553 [CrossRef]
    [Google Scholar]
  158. Weiss L., Donkova-Petrini V., Caccavelli L., Balbo M., Carbonneil C., Levy Y. 2004; Human immunodeficiency virus-driven expansion of CD4+CD25+ regulatory T cells which suppress HIV-specific CD4 T-cell responses in HIV-infected patients. Blood 104:3249–3256 [CrossRef]
    [Google Scholar]
  159. Wickelgren I. 2004; Policing the immune system. Science 306:596–599 [CrossRef]
    [Google Scholar]
  160. Williams B. G., Cutts F. T., Dye C. 1995; Measles vaccination policy. Epidemiol Infect 115:603–621 [CrossRef]
    [Google Scholar]
  161. Yanagi Y., Cubitt B. A., Oldstone M. B. 1992; Measles virus inhibits mitogen-induced T cell proliferation but does not directly perturb the T cell activation process inside the cell. Virology 187:280–289 [CrossRef]
    [Google Scholar]
  162. Yanagi Y., Ono N., Tatsuo H., Hashimoto K., Minagawa H. 2002; Measles virus receptor SLAM (CD150). Virology 299:155–161 [CrossRef]
    [Google Scholar]
  163. Yu Y., Alwine J. C. 2002; Human cytomegalovirus major immediate-early proteins and simian virus 40 large T antigen can inhibit apoptosis through activation of the phosphatidylinositide 3′-OH kinase pathway and the cellular kinase Akt. J Virol 76:3731–3738 [CrossRef]
    [Google Scholar]
  164. Yuan H., Veldman T., Rundell K., Schlegel R. 2002; Simian virus 40 small tumor antigen activates AKT and telomerase and induces anchorage-independent growth of human epithelial cells. J Virol 76:10685–10691 [CrossRef]
    [Google Scholar]
  165. Zaffran Y., Destaing O., Roux A., Ory S., Nheu T., Jurdic P., Rabourdin-Combe C., Astier A. L. 2001; CD46/CD3 costimulation induces morphological changes of human T cells and activation of Vav, Rac, and extracellular signal-regulated kinase mitogen-activated protein kinase. J Immunol 167:6780–6785 [CrossRef]
    [Google Scholar]
  166. Zelinskyy G., Robertson S. J., Schimmer S., Messer R. J., Hasenkrug K. J., Dittmer U. 2005; CD8+ T-cell dysfunction due to cytolytic granule deficiency in persistent Friend retrovirus infection. J Virol 79:10619–10626 [CrossRef]
    [Google Scholar]
  167. Zhang X., Glendening C., Linke H., Parks C. L., Brooks C., Udem S. A., Oglesbee M. 2002; Identification and characterization of a regulatory domain on the carboxyl terminus of the measles virus nucleocapsid protein. J Virol 76:8737–8746 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81713-0
Loading
/content/journal/jgv/10.1099/vir.0.81713-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error