1887

Abstract

The ability to evade or suppress the host's immune response is a property of many viruses, indicating that this provides an advantage for the pathogen to spread efficiently or even to establish a persistent infection. The type and complexity of its genome and cell tropism but also its preferred type of host interaction are important parameters which define the strategy of a given virus to modulate the immune system in an optimal manner. Because they take a central position in any antiviral defence, the activation and function of T cells are the predominant target of many viral immunosuppressive regimens. In this review, two different strategies whereby this could be achieved are summarized. Retroviruses can infect professional antigen-presenting cells and impair their maturation and functional properties. This coincides with differentiation and expansion of silencing T cells referred to as regulatory T cells with suppressive activity, mainly to CD8 effector T cells. The second concept, outlined for measles virus, is a direct, contact-mediated silencing of T cells which acquire a transient paralytic state.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81713-0
2006-06-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/6/1423.html?itemId=/content/journal/jgv/10.1099/vir.0.81713-0&mimeType=html&fmt=ahah

References

  1. Aandahl, E. M., Michaelsson, J., Moretto, W. J., Hecht, F. M. & Nixon, D. F. ( 2004; ). Human CD4+ CD25+ regulatory T cells control T-cell responses to human immunodeficiency virus and cytomegalovirus antigens. J Virol 78, 2454–2459.[CrossRef]
    [Google Scholar]
  2. Addae, M. M., Komada, Y., Zhang, X. L. & Sakurai, M. ( 1995; ). Immunological unresponsiveness and apoptotic cell death of T cells in measles virus infection. Acta Paediatr Jpn 37, 308–314.[CrossRef]
    [Google Scholar]
  3. Addae, M. M., Komada, Y., Taniguchi, K., Kamiya, T., Osei-Kwasi, M., Akanmori, B. D. & Nkrumah, F. K. ( 1998; ). Surface marker patterns of T cells and expression of interleukin-2 receptor in measles infection. Acta Paediatr Jpn 40, 7–13.
    [Google Scholar]
  4. Andersson, J., Boasso, A., Nilsson, J., Zhang, R., Shire, N. J., Lindback, S., Shearer, G. M. & Chougnet, C. A. ( 2005; ). The prevalence of regulatory T cells in lymphoid tissue is correlated with viral load in HIV-infected patients. J Immunol 174, 3143–3147.[CrossRef]
    [Google Scholar]
  5. Appay, V., Nixon, D. F., Donahoe, S. M. & 13 other authors ( 2000; ). HIV-specific CD8+ T cells produce antiviral cytokines but are impaired in cytolytic function. J Exp Med 192, 63–75.[CrossRef]
    [Google Scholar]
  6. Arneborn, P. & Biberfeld, G. ( 1983; ). T-lymphocyte subpopulations in relation to immunosuppression in measles and varicella. Infect Immun 39, 29–37.
    [Google Scholar]
  7. Astier, A., Trescol-Biemont, M. C., Azocar, O., Lamouille, B. & Rabourdin-Combe, C. ( 2000; ). Cutting edge: CD46, a new costimulatory molecule for T cells, that induces p120CBL and LAT phosphorylation. J Immunol 164, 6091–6095.[CrossRef]
    [Google Scholar]
  8. Auwaerter, P. G., Kaneshima, H., McCune, J. M., Wiegand, G. & Griffin, D. E. ( 1996; ). Measles virus infection of thymic epithelium in the SCID-hu mouse leads to thymocyte apoptosis. J Virol 70, 3734–3740.
    [Google Scholar]
  9. Aversa, G., Carballido, J., Punnonen, J., Chang, C. C., Hauser, T., Cocks, B. G. & De Vries, J. E. ( 1997; ). SLAM and its role in T cell activation and Th cell responses. Immunol Cell Biol 75, 202–205.[CrossRef]
    [Google Scholar]
  10. Avota, E., Avots, A., Niewiesk, S., Kane, L. P., Bommhardt, U., ter Meulen, V. & Schneider-Schaulies, S. ( 2001; ). Disruption of Akt kinase activation is important for immunosuppression induced by measles virus. Nat Med 7, 725–731.[CrossRef]
    [Google Scholar]
  11. Avota, E., Muller, N., Klett, M. & Schneider-Schaulies, S. ( 2004; ). Measles virus interacts with and alters signal transduction in T-cell lipid rafts. J Virol 78, 9552–9559.[CrossRef]
    [Google Scholar]
  12. Beilharz, M. W., Sammels, L. M., Paun, A., Shaw, K., Van Eeden, P., Watson, M. W. & Ashdown, M. L. ( 2004; ). Timed ablation of regulatory CD4+ T cells can prevent murine AIDS progression. J Immunol 172, 4917–4925.[CrossRef]
    [Google Scholar]
  13. Bieback, K., Lien, E., Klagge, I. M. & 7 other authors ( 2002; ). Hemagglutinin protein of wild-type measles virus activates toll-like receptor 2 signaling. J Virol 76, 8729–8736.[CrossRef]
    [Google Scholar]
  14. Black, F. L., Berman, L. L., Borgoño, J. M. & 14 other authors ( 1986; ). Geographic variation in infant loss of maternal measles antibody and in prevalence of rubella antibody. Am J Epidemiol 124, 442–452.
    [Google Scholar]
  15. Black, J. B., Durigon, E., Kite-Powell, K., de Souza, L., Curli, S. P., Afonso, A. M., Theobaldo, M. & Pellett, P. E. ( 1996; ). Seroconversion to human herpesvirus 6 and human herpesvirus 7 among Brazilian children with clinical diagnoses of measles or rubella. Clin Infect Dis 23, 1156–1158.[CrossRef]
    [Google Scholar]
  16. Borrow, P. & Oldstone, M. B. ( 1995; ). Measles virus–mononuclear cell interactions. Curr Top Microbiol Immunol 191, 85–100.
    [Google Scholar]
  17. Broliden, K., Abreu, E. R., Arneborn, M. & Bottiger, M. ( 1998; ). Immunity to mumps before and after MMR vaccination at 12 years of age in the first generation offered the two-dose immunization programme. Vaccine 16, 323–327.[CrossRef]
    [Google Scholar]
  18. Cacciotti, P., Barbone, D., Porta, C., Altomare, D. A., Testa, J. R., Mutti, L. & Gaudino, G. ( 2005; ). SV40-dependent AKT activity drives mesothelial cell transformation after asbestos exposure. Cancer Res 65, 5256–5262.[CrossRef]
    [Google Scholar]
  19. Casali, P., Rice, G. P. & Oldstone, M. B. ( 1984; ). Viruses disrupt functions of human lymphocytes. Effects of measles virus and influenza virus on lymphocyte-mediated killing and antibody production. J Exp Med 159, 1322–1337.[CrossRef]
    [Google Scholar]
  20. Ceglowski, W. S. & Friedman, H. ( 1968; ). Immunosuppression by leukemia viruses. I. Effect of Friend disease virus on cellular and humoral hemolysin responses of mice to a primary immunization with sheep erythrocytes. J Immunol 101, 594–604.
    [Google Scholar]
  21. Clements, C. J. & Cutts, F. T. ( 1995; ). The epidemiology of measles: thirty years of vaccination. Curr Top Microbiol Immunol 191, 13–33.
    [Google Scholar]
  22. Clerici, M. & Shearer, G. M. ( 1993; ). A TH1→TH2 switch is a critical step in the etiology of HIV infection. Immunol Today 14, 107–111.[CrossRef]
    [Google Scholar]
  23. Dawson, C. W., Tramountanis, G., Eliopoulos, A. G. & Young, L. S. ( 2003; ). Epstein-Barr virus latent membrane protein 1 (LMP1) activates the phosphatidylinositol 3-kinase/Akt pathway to promote cell survival and induce actin filament remodeling. J Biol Chem 278, 3694–3704.[CrossRef]
    [Google Scholar]
  24. de Witte, L., Abt, M., Schneider-Schaulies, S., van Kooyk, Y. & Geijtenbeek, T. B. H. ( 2006; ). Measles virus targets DC-SIGN to enhance dendritic cell infection. J Virol 80, 3477–3486.[CrossRef]
    [Google Scholar]
  25. Dittmer, U., Luke, W., Stahl-Hennig, C., Coulibaly, C., Petry, H., Bodemer, W., Hunsmann, G. & Voss, G. ( 1994; ). Early helper T-cell dysfunction in simian immunodeficiency virus but not in human immunodeficiency virus type-2-infected macaques. J Med Primatol 23, 298–303.[CrossRef]
    [Google Scholar]
  26. Dittmer, U., Race, B., Peterson, K. E., Stromnes, I. M., Messer, R. J. & Hasenkrug, K. J. ( 2002; ). Essential roles for CD8+ T cells and gamma interferon in protection of mice against retrovirus-induced immunosuppression. J Virol 76, 450–454.[CrossRef]
    [Google Scholar]
  27. Dittmer, U., He, H., Messer, R. J. & 11 other authors ( 2004; ). Functional impairment of CD8+ T cells by regulatory T cells during persistent retroviral infection. Immunity 20, 293–303.[CrossRef]
    [Google Scholar]
  28. Dollimore, N., Cutts, F., Binka, F. N., Ross, D. A., Morris, S. S. & Smith, P. G. ( 1997; ). Measles incidence, case fatality, and delayed mortality in children with or without vitamin A supplementation in rural Ghana. Am J Epidemiol 146, 646–654.[CrossRef]
    [Google Scholar]
  29. Dorig, R. E., Marcil, A., Chopra, A. & Richardson, C. D. ( 1993; ). The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 75, 295–305.[CrossRef]
    [Google Scholar]
  30. Draenert, R., Verrill, C. L., Tang, Y. & 9 other authors ( 2004; ). Persistent recognition of autologous virus by high-avidity CD8 T cells in chronic, progressive human immunodeficiency virus type 1 infection. J Virol 78, 630–641.[CrossRef]
    [Google Scholar]
  31. Dunster, L. M., Schneider-Schaulies, J., Dehoff, M. H., Holers, V. M., Schwartz-Albiez, R. & ter Meulen, V. ( 1995; ). Moesin, and not the murine functional homologue (Crry/p65) of human membrane cofactor protein (CD46), is involved in the entry of measles virus (strain Edmonston) into susceptible murine cell lines. J Gen Virol 76, 2085–2089.[CrossRef]
    [Google Scholar]
  32. Engelking, O., Fedorov, L. M., Lilischkis, R., ter Meulen, V. & Schneider-Schaulies, S. ( 1999; ). Measles virus-induced immunosuppression in vitro is associated with deregulation of G1 cell cycle control proteins. J Gen Virol 80, 1599–1608.
    [Google Scholar]
  33. Ericsson, A., Arya, A. & Agace, W. ( 2004; ). CCL25 enhances CD103-mediated lymphocyte adhesion to E-cadherin. Ann N Y Acad Sci 1029, 334–336.[CrossRef]
    [Google Scholar]
  34. Erlenhoefer, C., Wurzer, W. J., Löffler, S., Schneider-Schaulies, S., ter Meulen, V. & Schneider-Schaulies, J. ( 2001; ). CD150 (SLAM) is a receptor for measles virus but is not involved in viral contact-mediated proliferation inhibition. J Virol 75, 4499–4505.[CrossRef]
    [Google Scholar]
  35. Erlenhöfer, C., Duprex, W. P., Rima, B. K., ter Meulen, V. & Schneider-Schaulies, J. ( 2002; ). Analysis of receptor (CD46, CD150) usage by measles virus. J Gen Virol 83, 1431–1436.
    [Google Scholar]
  36. Esolen, L. M., Ward, B. J., Moench, T. R. & Griffin, D. E. ( 1993; ). Infection of monocytes during measles. J Infect Dis 168, 47–52.[CrossRef]
    [Google Scholar]
  37. Fantuzzi, L., Purificato, C., Donato, K., Belardelli, F. & Gessani, S. ( 2004; ). Human immunodeficiency virus type 1 gp120 induces abnormal maturation and functional alterations of dendritic cells: a novel mechanism for AIDS pathogenesis. J Virol 78, 9763–9772.[CrossRef]
    [Google Scholar]
  38. Fugier-Vivier, I., Servet-Delprat, C., Rivailler, P., Rissoan, M. C., Liu, Y. J. & Rabourdin-Combe, C. ( 1997; ). Measles virus suppresses cell-mediated immunity by interfering with the survival and functions of dendritic and T cells. J Exp Med 186, 813–823.[CrossRef]
    [Google Scholar]
  39. Fujinami, R. S., Sun, X., Howell, J. M., Jenkin, J. C. & Burns, J. B. ( 1998; ). Modulation of immune system function by measles virus infection: role of soluble factor and direct infection. J Virol 72, 9421–9427.
    [Google Scholar]
  40. Geijtenbeek, T. B. H. & van Kooyk, Y. ( 2003; ). Pathogens target DC-SIGN to influence their fate: DC-SIGN functions as a pathogen receptor with broad specificity. APMIS 111, 698–714.[CrossRef]
    [Google Scholar]
  41. Gougeon, M. L. ( 2003; ). Apoptosis as an HIV strategy to escape immune attack. Nat Rev Immunol 3, 392–404.[CrossRef]
    [Google Scholar]
  42. Goulder, P. J. & Watkins, D. I. ( 2004; ). HIV and SIV CTL escape: implications for vaccine design. Nat Rev Immunol 4, 630–640.[CrossRef]
    [Google Scholar]
  43. Granelli-Piperno, A., Golebiowska, A., Trumpfheller, C., Siegal, F. P. & Steinman, R. M. ( 2004; ). HIV-1-infected monocyte-derived dendritic cells do not undergo maturation but can elicit IL-10 production and T cell regulation. Proc Natl Acad Sci U S A 101, 7669–7674.[CrossRef]
    [Google Scholar]
  44. Griffin, D. E. ( 1995; ). Immune responses during measles virus infection. Curr Top Microbiol Immunol 191, 117–134.
    [Google Scholar]
  45. Griffin, D. E. & Ward, B. J. ( 1993; ). Differential CD4 T cell activation in measles. J Infect Dis 168, 275–281.[CrossRef]
    [Google Scholar]
  46. Griffin, D. E., Ward, B. J., Jauregui, E., Johnson, R. T. & Vaisberg, A. ( 1989; ). Immune activation in measles. N Engl J Med 320, 1667–1672.[CrossRef]
    [Google Scholar]
  47. Grosjean, I., Caux, C., Bella, C., Berger, I., Wild, F., Banchereau, J. & Kaiserlian, D. ( 1997; ). Measles virus infects human dendritic cells and blocks their allostimulatory properties for CD4+ T cells. J Exp Med 186, 801–812.[CrossRef]
    [Google Scholar]
  48. Hahm, B., Arbour, N., Naniche, D., Homann, D., Manchester, M. & Oldstone, M. B. ( 2003; ). Measles virus infects and suppresses proliferation of T lymphocytes from transgenic mice bearing human signaling lymphocytic activation molecule. J Virol 77, 3505–3515.[CrossRef]
    [Google Scholar]
  49. Hahm, B., Arbour, N. & Oldstone, M. B. ( 2004; ). Measles virus interacts with human SLAM receptor on dendritic cells to cause immunosuppression. Virology 323, 292–302.[CrossRef]
    [Google Scholar]
  50. Hahm, B., Trifilo, M. J., Zuniga, E. I. & Oldstone, M. B. ( 2005; ). Viruses evade the immune system through type I interferon-mediated STAT2-dependent, but STAT1-independent, signaling. Immunity 22, 247–257.[CrossRef]
    [Google Scholar]
  51. Harrowe, G., Mitsuhashi, M. & Payan, D. G. ( 1990; ). Measles virus–substance P receptor interactions. Possible novel mechanism of viral fusion. J Clin Invest 85, 1324–1327.[CrossRef]
    [Google Scholar]
  52. Harrowe, G., Sudduth-Klinger, J. & Payan, D. G. ( 1992; ). Measles virus–substance P receptor interaction: Jurkat lymphocytes transfected with substance P receptor cDNA enhance measles virus fusion and replication. Cell Mol Neurobiol 12, 397–409.[CrossRef]
    [Google Scholar]
  53. Hasenkrug, K. J. & Chesebro, B. ( 1997; ). Immunity to retroviral infection: the Friend virus model. Proc Natl Acad Sci U S A 94, 7811–7816.[CrossRef]
    [Google Scholar]
  54. He, H., Messer, R. J., Sakaguchi, S., Yang, G. J., Robertson, S. J. & Hasenkrug, K. J. ( 2004; ). Reduction of retrovirus-induced immunosuppression by in vivo modulation of T cells during acute infection. J Virol 78, 11641–11647.[CrossRef]
    [Google Scholar]
  55. Heaney, J., Barrett, T. & Cosby, S. L. ( 2002; ). Inhibition of in vitro leukocyte proliferation by morbilliviruses. J Virol 76, 3579–3584.[CrossRef]
    [Google Scholar]
  56. Hess, C., Altfeld, M., Thomas, S. Y. & 9 other authors ( 2004; ). HIV-1 specific CD8+ T cells with an effector phenotype and control of viral replication. Lancet 363, 863–866.[CrossRef]
    [Google Scholar]
  57. Hoatlin, M. E. & Kabat, D. ( 1995; ). Host-range control of a retroviral disease: Friend erythroleukemia. Trends Microbiol 3, 51–57.[CrossRef]
    [Google Scholar]
  58. Hsu, E. C., Iorio, C., Sarangi, F., Khine, A. A. & Richardson, C. D. ( 2001; ). CDw150 (SLAM) is a receptor for a lymphotropic strain of measles virus and may account for the immunosuppressive properties of this virus. Virology 279, 9–21.[CrossRef]
    [Google Scholar]
  59. Iwashiro, M., Messer, R. J., Peterson, K. E., Stromnes, I. M., Sugie, T. & Hasenkrug, K. J. ( 2001; ). Immunosuppression by CD4+ regulatory T cells induced by chronic retroviral infection. Proc Natl Acad Sci U S A 98, 9226–9230.[CrossRef]
    [Google Scholar]
  60. Johnson, W. E. & Desrosiers, R. C. ( 2002; ). Viral persistence: HIV's strategies of immune system evasion. Annu Rev Med 53, 499–518.[CrossRef]
    [Google Scholar]
  61. Johnson, R. T., Griffin, D. E., Hirsch, R. & Vaisberg, A. ( 1983; ). Measles encephalitis. Clin Exp Neurol 19, 13–16.
    [Google Scholar]
  62. Karp, C. L., Wysocka, M., Wahl, L. M., Ahearn, J. M., Cuomo, P. J., Sherry, B., Trinchieri, G. & Griffin, D. E. ( 1996; ). Mechanism of suppression of cell-mediated immunity by measles virus. Science 273, 228–231.[CrossRef]
    [Google Scholar]
  63. Katz, M. ( 1995; ). Clinical spectrum of measles. Curr Top Microbiol Immunol 191, 1–12.
    [Google Scholar]
  64. Kemper, C., Chan, A. C., Green, J. M., Brett, K. A., Murphy, K. M. & Atkinson, J. P. ( 2003; ). Activation of human CD4+ cells with CD3 and CD46 induces a T-regulatory cell 1 phenotype. Nature 421, 388–392.[CrossRef]
    [Google Scholar]
  65. Kemper, C., Verbsky, J. W., Price, J. D. & Atkinson, J. P. ( 2005; ). T-cell stimulation and regulation: with complements from CD46. Immunol Res 32, 31–44.[CrossRef]
    [Google Scholar]
  66. Kiel, M. J., Yilmaz, O. H., Iwashita, T., Yilmaz, O. H., Terhorst, C. & Morrison, S. J. ( 2005; ). SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121.[CrossRef]
    [Google Scholar]
  67. Kinter, A. L., Hennessey, M., Bell, A. & 8 other authors ( 2004; ). CD25+CD4+ regulatory T cells from the peripheral blood of asymptomatic HIV-infected individuals regulate CD4+ and CD8+ HIV-specific T cell immune responses in vitro and are associated with favorable clinical markers of disease status. J Exp Med 200, 331–343.[CrossRef]
    [Google Scholar]
  68. Kobune, F., Takahashi, H., Terao, K. & 7 other authors ( 1996; ). Nonhuman primate models of measles. Lab Anim Sci 46, 315–320.
    [Google Scholar]
  69. Koibuchi, T., Allen, T. M., Lichterfeld, M., Mui, S. K., O'Sullivan, K. M., Trocha, A., Kalams, S. A., Johnson, R. P. & Walker, B. D. ( 2005; ). Limited sequence evolution within persistently targeted CD8 epitopes in chronic human immunodeficiency virus type 1 infection. J Virol 79, 8171–8181.[CrossRef]
    [Google Scholar]
  70. Kraft, A. R. M., Arndt, T., Hasenkrug, K. J. & Dittmer, U. ( 2005; ). Effective treatment of retrovirus-induced suppression of antibody responses with CpG oligodeoxynucleotides. J Gen Virol 86, 3365–3368.[CrossRef]
    [Google Scholar]
  71. Krathwohl, M. D., Schacker, T. W. & Anderson, J. L. ( 2006; ). Abnormal presence of semimature dendritic cells that induce regulatory T cells in HIV-infected subjects. J Infect Dis 193, 494–504.[CrossRef]
    [Google Scholar]
  72. Kurt-Jones, E. A., Popova, L., Kwinn, L. & 8 other authors ( 2000; ). Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol 1, 398–401.[CrossRef]
    [Google Scholar]
  73. Laine, D., Trescol-Biemont, M. C., Longhi, S. & 8 other authors ( 2003; ). Measles virus (MV) nucleoprotein binds to a novel cell surface receptor distinct from FcγRII via its C-terminal domain: role in MV-induced immunosuppression. J Virol 77, 11332–11346.[CrossRef]
    [Google Scholar]
  74. Laine, D., Bourhis, J. M., Longhi, S., Flacher, M., Cassard, L., Canard, B., Sautès-Fridman, C., Rabourdin-Combe, C. & Valentin, H. ( 2005; ). Measles virus nucleoprotein induces cell-proliferation arrest and apoptosis through NTAIL–NR and NCORE–FcγRIIB1 interactions, respectively. J Gen Virol 86, 1771–1784.[CrossRef]
    [Google Scholar]
  75. Lennon, J. L. & Black, F. L. ( 1986; ). Maternally derived measles immunity in era of vaccine-protected mothers. J Pediatr 108, 671–676.[CrossRef]
    [Google Scholar]
  76. Lichterfeld, M., Kaufmann, D. E., Yu, X. G. & 12 other authors ( 2004; ). Loss of HIV-1-specific CD8+ T cell proliferation after acute HIV-1 infection and restoration by vaccine-induced HIV-1-specific CD4+ T cells. J Exp Med 200, 701–712.[CrossRef]
    [Google Scholar]
  77. Lieberman, J., Shankar, P., Manjunath, N. & Andersson, J. ( 2001; ). Dressed to kill? A review of why antiviral CD8 T lymphocytes fail to prevent progressive immunodeficiency in HIV-1 infection. Blood 98, 1667–1677.[CrossRef]
    [Google Scholar]
  78. Majumder, B., Janket, M. L., Schafer, E. A., Schaubert, K., Huang, X.-L., Kan-Mitchell, J., Rinaldo, C. R., Jr & Ayyavoo, V. ( 2005; ). Human immunodeficiency virus type 1 Vpr impairs dendritic cell maturation and T-cell activation: implications for viral immune escape. J Virol 79, 7990–8003.[CrossRef]
    [Google Scholar]
  79. Manchester, M., Smith, K. A., Eto, D. S., Perkin, H. B. & Torbett, B. E. ( 2002; ). Targeting and hematopoietic suppression of human CD34+ cells by measles virus. J Virol 76, 6636–6642.[CrossRef]
    [Google Scholar]
  80. Marie, J. C., Kehren, J., Trescol-Biemont, M. C. & 8 other authors ( 2001; ). Mechanism of measles virus-induced suppression of inflammatory immune responses. Immunity 14, 69–79.[CrossRef]
    [Google Scholar]
  81. Marie, J. C., Astier, A. L., Rivailler, P., Rabourdin-Combe, C., Wild, T. F. & Horvat, B. ( 2002; ). Linking innate and acquired immunity: divergent role of CD46 cytoplasmic domains in T cell induced inflammation. Nat Immunol 3, 659–666.
    [Google Scholar]
  82. Marie, J. C., Saltel, F., Escola, J. M., Jurdic, P., Wild, T. F. & Horvat, B. ( 2004; ). Cell surface delivery of the measles virus nucleoprotein: a viral strategy to induce immunosuppression. J Virol 78, 11952–11961.[CrossRef]
    [Google Scholar]
  83. McChesney, M. B., Fujinami, R. S., Lerche, N. W., Marx, P. A. & Oldstone, M. B. ( 1989; ). Virus-induced immunosuppression: infection of peripheral blood mononuclear cells and suppression of immunoglobulin synthesis during natural measles virus infection of rhesus monkeys. J Infect Dis 159, 757–760.[CrossRef]
    [Google Scholar]
  84. Migueles, S. A., Laborico, A. C., Shupert, W. L. & 11 other authors ( 2002; ). HIV-specific CD8+ T cell proliferation is coupled to perforin expression and is maintained in nonprogressors. Nat Immunol 3, 1061–1068.[CrossRef]
    [Google Scholar]
  85. Mills, K. H. G. ( 2004; ). Regulatory T cells: friend or foe in immunity to infection? Nat Rev Immunol 4, 841–855.[CrossRef]
    [Google Scholar]
  86. Minagawa, H., Tanaka, K., Ono, N., Tatsuo, H. & Yanagi, Y. ( 2001; ). Induction of the measles virus receptor SLAM (CD150) on monocytes. J Gen Virol 82, 2913–2917.
    [Google Scholar]
  87. Morrison, R. P., Earl, P. L., Nishio, J., Lodmell, D. L., Moss, B. & Chesebro, B. ( 1987; ). Different H-2 subregions influence immunization against retrovirus and immunosuppression. Nature 329, 729–732.[CrossRef]
    [Google Scholar]
  88. Moss, W. J., Ryon, J. J., Monze, M. & Griffin, D. E. ( 2002; ). Differential regulation of interleukin (IL)-4, IL-5, and IL-10 during measles in Zambian children. J Infect Dis 186, 879–887.[CrossRef]
    [Google Scholar]
  89. Mrkic, B., Odermatt, B., Klein, M. A., Billeter, M. A., Pavlovic, J. & Cattaneo, R. ( 2000; ). Lymphatic dissemination and comparative pathology of recombinant measles viruses in genetically modified mice. J Virol 74, 1364–1372.[CrossRef]
    [Google Scholar]
  90. Muthumani, K., Hwang, D. S., Choo, A. Y., Mavilvahanan, S., Dayes, N. S., Thieu, K. P. & Weiner, D. B. ( 2005; ). HIV-1 Vpr inhibits the maturation and activation of macrophages and dendritic cells in vitro. Int Immunol 17, 103–116.
    [Google Scholar]
  91. Nanan, R., Chittka, B., Hadam, M. & Kreth, H. W. ( 1999; ). Measles virus infection causes transient depletion of activated T cells from peripheral circulation. J Clin Virol 12, 201–210.[CrossRef]
    [Google Scholar]
  92. Naniche, D., Varior-Krishnan, G., Cervoni, F., Wild, T. F., Rossi, B., Rabourdin-Combe, C. & Gerlier, D. ( 1993; ). Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J Virol 67, 6025–6032.
    [Google Scholar]
  93. Naniche, D., Reed, S. I. & Oldstone, M. B. A. ( 1999; ). Cell cycle arrest during measles virus infection: a G0-like block leads to suppression of retinoblastoma protein expression. J Virol 73, 1894–1901.
    [Google Scholar]
  94. Naniche, D., Yeh, A., Eto, D., Manchester, M., Friedman, R. M. & Oldstone, M. B. A. ( 2000; ). Evasion of host defenses by measles virus: wild-type measles virus infection interferes with induction of alpha/beta interferon production. J Virol 74, 7478–7484.[CrossRef]
    [Google Scholar]
  95. Niewiesk, S., Eisenhuth, I., Fooks, A., Clegg, J. C., Schnorr, J. J., Schneider-Schaulies, S. & ter Meulen, V. ( 1997; ). Measles virus-induced immune suppression in the cotton rat (Sigmodon hispidus) model depends on viral glycoproteins. J Virol 71, 7214–7219.
    [Google Scholar]
  96. Niewiesk, S., Ohnimus, H., Schnorr, J. J., Gotzelmann, M., Schneider-Schaulies, S., Jassoy, C. & ter Meulen, V. ( 1999; ). Measles virus-induced immunosuppression in cotton rats is associated with cell cycle retardation in uninfected lymphocytes. J Gen Virol 80, 2023–2029.
    [Google Scholar]
  97. Nozawa, Y., Ono, N., Abe, M., Sakuma, H. & Wakasa, H. ( 1994; ). An immunohistochemical study of Warthin-Finkeldey cells in measles. Pathol Int 44, 442–447.[CrossRef]
    [Google Scholar]
  98. O'Connor, D., Friedrich, T., Hughes, A., Allen, T. M. & Watkins, D. ( 2001; ). Understanding cytotoxic T-lymphocyte escape during simian immunodeficiency virus infection. Immunol Rev 183, 115–126.[CrossRef]
    [Google Scholar]
  99. Ohgimoto, S., Ohgimoto, K., Niewiesk, S. & 7 other authors ( 2001; ). The haemagglutinin protein is an important determinant of measles virus tropism for dendritic cells in vitro. J Gen Virol 82, 1835–1844.
    [Google Scholar]
  100. Ohno, S., Ono, N., Takeda, M., Takeuchi, K. & Yanagi, Y. ( 2004; ). Dissection of measles virus V protein in relation to its ability to block alpha/beta interferon signal transduction. J Gen Virol 85, 2991–2999.[CrossRef]
    [Google Scholar]
  101. Okada, H., Kobune, F., Sato, T. A., Kohama, T., Takeuchi, Y., Abe, T., Takayama, N., Tsuchiya, T. & Tashiro, M. ( 2000; ). Extensive lymphopenia due to apoptosis of uninfected lymphocytes in acute measles patients. Arch Virol 145, 905–920.[CrossRef]
    [Google Scholar]
  102. Okada, H., Sato, T. A., Katayama, A. & 8 other authors ( 2001; ). Comparative analysis of host responses related to immunosuppression between measles patients and vaccine recipients with live attenuated measles vaccines. Arch Virol 146, 859–874.[CrossRef]
    [Google Scholar]
  103. Ono, N., Tatsuo, H., Hidaka, Y., Aoki, T., Minagawa, H. & Yanagi, Y. ( 2001; ). Measles viruses on throat swabs from measles patients use signaling lymphocytic activation molecule (CDw150) but not CD46 as a cellular receptor. J Virol 75, 4399–4401.[CrossRef]
    [Google Scholar]
  104. Ostrowski, M. A., Gu, J. X., Kovacs, C., Freedman, J., Luscher, M. A. & MacDonald, K. S. ( 2001; ). Quantitative and qualitative assessment of human immunodeficiency virus type 1 (HIV-1)-specific CD4+ T cell immunity to gag in HIV-1-infected individuals with differential disease progression: reciprocal interferon-gamma and interleukin-10 responses. J Infect Dis 184, 1268–1278.[CrossRef]
    [Google Scholar]
  105. Palosaari, H., Parisien, J. P., Rodriguez, J. J., Ulane, C. M. & Horvath, C. M. ( 2003; ). STAT protein interference and suppression of cytokine signal transduction by measles virus V protein. J Virol 77, 7635–7644.[CrossRef]
    [Google Scholar]
  106. Permar, S. R., Moss, W. J., Ryon, J. J., Douek, D. C., Monze, M. & Griffin, D. E. ( 2003; ). Increased thymic output during acute measles virus infection. J Virol 77, 7872–7879.[CrossRef]
    [Google Scholar]
  107. Peyerl, F. W., Barouch, D. H. & Letvin, N. L. ( 2004; ). Structural constraints on viral escape from HIV- and SIV-specific cytotoxic T-lymphocytes. Viral Immunol 17, 144–151.[CrossRef]
    [Google Scholar]
  108. Pfeuffer, J., Püschel, K., ter Meulen, V., Schneider-Schaulies, J. & Niewiesk, S. ( 2003; ). Extent of measles virus spread and immune suppression differentiates between wild-type and vaccine strains in the cotton rat model (Sigmodon hispidus). J Virol 77, 150–158.[CrossRef]
    [Google Scholar]
  109. Pollara, G., Kwan, A., Newton, P. J., Handley, M. E., Chain, B. M. & Katz, D. R. ( 2005; ). Dendritic cells in viral pathogenesis: protective or defective? Int J Exp Pathol 86, 187–204.[CrossRef]
    [Google Scholar]
  110. Ravanel, K., Castelle, C., Defrance, T., Wild, T. F., Charron, D., Lotteau, V. & Rabourdin-Combe, C. ( 1997; ). Measles virus nucleocapsid protein binds to FcγRII and inhibits human B cell antibody production. J Exp Med 186, 269–278.[CrossRef]
    [Google Scholar]
  111. Rosenberg, E. S., Billingsley, J. M., Caliendo, A. M., Boswell, S. L., Sax, P. E., Kalams, S. A. & Walker, B. D. ( 1997; ). Vigorous HIV-1-specific CD4+ T cell responses associated with control of viremia. Science 278, 1447–1450.[CrossRef]
    [Google Scholar]
  112. Rosenberg, E. S., LaRosa, L., Flynn, T., Robbins, G. & Walker, B. D. ( 1999; ). Characterization of HIV-1-specific T-helper cells in acute and chronic infection. Immunol Lett 66, 89–93.[CrossRef]
    [Google Scholar]
  113. Ryon, J. J., Moss, W. J., Monze, M. & Griffin, D. E. ( 2002; ). Functional and phenotypic changes in circulating lymphocytes from hospitalized Zambian children with measles. Clin Diagn Lab Immunol 9, 994–1003.
    [Google Scholar]
  114. Sakaguchi, S. ( 2003; ). Regulatory T cells: mediating compromises between host and parasite. Nat Immunol 4, 10–11.[CrossRef]
    [Google Scholar]
  115. Sakaguchi, S. ( 2005; ). Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 6, 345–352.
    [Google Scholar]
  116. Sanchez-Lanier, M., Guerin, P., McLaren, L. C. & Bankhurst, A. D. ( 1988; ). Measles virus-induced suppression of lymphocyte proliferation. Cell Immunol 116, 367–381.[CrossRef]
    [Google Scholar]
  117. Schlender, J., Schnorr, J. J., Spielhoffer, P., Cathomen, T., Cattaneo, R., Billeter, M. A., ter Meulen, V. & Schneider-Schaulies, S. ( 1996; ). Interaction of measles virus glycoproteins with the surface of uninfected peripheral blood lymphocytes induces immunosuppression in vitro. Proc Natl Acad Sci U S A 93, 13194–13199.[CrossRef]
    [Google Scholar]
  118. Schlender, J., Walliser, G., Fricke, J. & Conzelmann, K. K. ( 2002; ). Respiratory syncytial virus fusion protein mediates inhibition of mitogen-induced T-cell proliferation by contact. J Virol 76, 1163–1170.[CrossRef]
    [Google Scholar]
  119. Schneider, U., von Messling, V., Devaux, P. & Cattaneo, R. ( 2002; ). Efficiency of measles virus entry and dissemination through different receptors. J Virol 76, 7460–7467.[CrossRef]
    [Google Scholar]
  120. Schneider-Schaulies, S. & ter Meulen, V. ( 2002; ). Measles virus and immunomodulation: molecular bases and perspectives. Expert Rev Mol Med 2002, 1–18.
    [Google Scholar]
  121. Schneider-Schaulies, J., Dunster, L. M., Schwartz-Albiez, R., Krohne, G. & ter Meulen, V. ( 1995; ). Physical association of moesin and CD46 as a receptor complex for measles virus. J Virol 69, 2248–2256.
    [Google Scholar]
  122. Schneider-Schaulies, J., Schnorr, J. J., Schlender, J., Dunster, L. M., Schneider-Schaulies, S. & ter Meulen, V. ( 1996; ). Receptor (CD46) modulation and complement-mediated lysis of uninfected cells after contact with measles virus-infected cells. J Virol 70, 255–263.
    [Google Scholar]
  123. Schneider-Schaulies, J., ter Meulen, V. & Schneider-Schaulies, S. ( 2003a; ). Measles infection of the central nervous system. J Neurovirol 9, 247–252.[CrossRef]
    [Google Scholar]
  124. Schneider-Schaulies, S., Klagge, I. M. & ter Meulen, V. ( 2003b; ). Dendritic cells and measles virus infection. Curr Top Microbiol Immunol 276, 77–101.
    [Google Scholar]
  125. Schnorr, J. J., Dunster, L. M., Nanan, R., Schneider-Schaulies, J., Schneider-Schaulies, S. & ter Meulen, V. ( 1995; ). Measles virus-induced down-regulation of CD46 is associated with enhanced sensitivity to complement-mediated lysis of infected cells. Eur J Immunol 25, 976–984.[CrossRef]
    [Google Scholar]
  126. Schnorr, J. J., Seufert, M., Schlender, J., Borst, J., Johnston, I. C., ter Meulen, V. & Schneider-Schaulies, S. ( 1997; ). Cell cycle arrest rather than apoptosis is associated with measles virus contact-mediated immunosuppression in vitro. J Gen Virol 78, 3217–3226.
    [Google Scholar]
  127. Servet-Delprat, C., Vidalain, P. O., Azocar, O., Le Deist, F., Fischer, A. & Rabourdin-Combe, C. ( 2000; ). Consequences of Fas-mediated human dendritic cell apoptosis induced by measles virus. J Virol 74, 4387–4393.[CrossRef]
    [Google Scholar]
  128. Sevilla, N., Kunz, S., Holz, A., Lewicki, H., Homann, D., Yamada, H., Campbell, K. P., de La Torre, J. C. & Oldstone, M. B. ( 2000; ). Immunosuppression and resultant viral persistence by specific viral targeting of dendritic cells. J Exp Med 192, 1249–1260.[CrossRef]
    [Google Scholar]
  129. Sevilla, N., Kunz, S., McGavern, D. & Oldstone, M. B. ( 2003; ). Infection of dendritic cells by lymphocytic choriomeningitis virus. Curr Top Microbiol Immunol 276, 125–144.
    [Google Scholar]
  130. Sevilla, N., McGavern, D. B., Teng, C., Kunz, S. & Oldstone, M. B. ( 2004; ). Viral targeting of hematopoietic progenitors and inhibition of DC maturation as a dual strategy for immune subversion. J Clin Invest 113, 737–745.[CrossRef]
    [Google Scholar]
  131. Shaffer, J. A., Bellini, W. J. & Rota, P. A. ( 2003; ). The C protein of measles virus inhibits the type I interferon response. Virology 315, 389–397.[CrossRef]
    [Google Scholar]
  132. Shimizu, J., Yamazaki, S., Takahashi, T., Ishida, Y. & Sakaguchi, S. ( 2002; ). Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol 3, 135–142.[CrossRef]
    [Google Scholar]
  133. Shingai, M., Inoue, N., Okuno, T. & 10 other authors ( 2005; ). Wild-type measles virus infection in human CD46/CD150-transgenic mice: CD11c-positive dendritic cells establish systemic viral infection. J Immunol 175, 3252–3261.[CrossRef]
    [Google Scholar]
  134. Sidorenko, S. P. & Clark, E. A. ( 2003; ). The dual-function CD150 receptor subfamily: the viral attraction. Nat Immunol 4, 19–24.[CrossRef]
    [Google Scholar]
  135. Steinman, R. M., Granelli-Piperno, A., Pope, M., Trumpfheller, C., Ignatius, R., Arrode, G., Racz, P. & Tenner-Racz, K. ( 2003; ). The interaction of immunodeficiency viruses with dendritic cells. Curr Top Microbiol Immunol 276, 1–30.
    [Google Scholar]
  136. Stephens, G. L., McHugh, R. S., Whitters, M. J., Young, D. A., Luxenberg, D., Carreno, M., Collins, M. & Shevach, E. M. ( 2004; ). Engagement of glucocorticoid-induced TNFR family-related receptor on effector T cells by ligand mediates resistance to suppression by CD4+CD25+ T cells. J Immunol 173, 5008–5020.[CrossRef]
    [Google Scholar]
  137. Stolte, M., Haas, L., Wamwayi, H. M., Barrett, T. & Wohlsein, P. ( 2002; ). Induction of apoptotic cellular death in lymphatic tissues of cattle experimentally infected with different strains of rinderpest virus. J Comp Pathol 127, 14–21.[CrossRef]
    [Google Scholar]
  138. Suffia, I., Reckling, S. K., Salay, G. & Belkaid, Y. ( 2005; ). A role for CD103 in the retention of CD4+CD25+ Treg and control of Leishmania major infection. J Immunol 174, 5444–5455.[CrossRef]
    [Google Scholar]
  139. Sun, X., Burns, J. B., Howell, J. M. & Fujinami, R. S. ( 1998; ). Suppression of antigen-specific T cell proliferation by measles virus infection: role of a soluble factor in suppression. Virology 246, 24–33.[CrossRef]
    [Google Scholar]
  140. Tamashiro, V. G., Perez, H. H. & Griffin, D. E. ( 1987; ). Prospective study of the magnitude and duration of changes in tuberculin reactivity during uncomplicated and complicated measles. Pediatr Infect Dis J 6, 451–454.[CrossRef]
    [Google Scholar]
  141. Tatsuo, H. & Yanagi, Y. ( 2002; ). The morbillivirus receptor SLAM (CD150). Microbiol Immunol 46, 135–142.[CrossRef]
    [Google Scholar]
  142. Tatsuo, H., Ono, N., Tanaka, K. & Yanagi, Y. ( 2000; ). SLAM (CDw150) is a cellular receptor for measles virus. Nature 406, 893–897.[CrossRef]
    [Google Scholar]
  143. tenOever, B. R., Servant, M. J., Grandvaux, N., Lin, R. & Hiscott, J. ( 2002; ). Recognition of the measles virus nucleocapsid as a mechanism of IRF-3 activation. J Virol 76, 3659–3669.[CrossRef]
    [Google Scholar]
  144. Trimble, L. A. & Lieberman, J. ( 1998; ). Circulating CD8 T lymphocytes in human immunodeficiency virus-infected individuals have impaired function and downmodulate CD3ζ, the signaling chain of the T-cell receptor complex. Blood 91, 585–594.
    [Google Scholar]
  145. Vahlenkamp, T. W., Tompkins, M. B. & Tompkins, W. A. F. ( 2004; ). Feline immunodeficiency virus infection phenotypically and functionally activates immunosuppressive CD4+CD25+ T regulatory cells. J Immunol 172, 4752–4761.[CrossRef]
    [Google Scholar]
  146. Valentin, H., Azocar, O., Horvat, B., Williems, R., Garrone, R., Evlashev, A., Toribio, M. L. & Rabourdin-Combe, C. ( 1999; ). Measles virus infection induces terminal differentiation of human thymic epithelial cells. J Virol 73, 2212–2221.
    [Google Scholar]
  147. Valsamakis, A., Auwaerter, P. G., Rima, B. K., Kaneshima, H. & Griffin, D. E. ( 1999; ). Altered virulence of vaccine strains of measles virus after prolonged replication in human tissue. J Virol 73, 8791–8797.
    [Google Scholar]
  148. van Binnendijk, R. S., van der Heijden, R. W. & Osterhaus, A. D. ( 1995; ). Monkeys in measles research. Curr Top Microbiol Immunol 191, 135–148.
    [Google Scholar]
  149. van Kooyk, Y. & Geijtenbeek, T. B. ( 2003; ). DC-SIGN: escape mechanism for pathogens. Nat Rev Immunol 3, 697–709.[CrossRef]
    [Google Scholar]
  150. Vidalain, P.-O., Azocar, O., Lamouille, B., Astier, A., Rabourdin-Combe, C. & Servet-Delprat, C. ( 2000; ). Measles virus induces functional TRAIL production by human dendritic cells. J Virol 74, 556–559.[CrossRef]
    [Google Scholar]
  151. Vidalain, P.-O., Azocar, O., Rabourdin-Combe, C. & Servet-Delprat, C. ( 2001; ). Measle virus-infected dendritic cells develop immunosuppressive and cytotoxic activities. Immunobiology 204, 629–638.[CrossRef]
    [Google Scholar]
  152. Vlad, G., Cortesini, R. & Suciu-Foca, N. ( 2005; ). License to heal: bidirectional interaction of antigen-specific regulatory T cells and tolerogenic APC. J Immunol 174, 5907–5914.[CrossRef]
    [Google Scholar]
  153. von Messling, V., Milosevic, D. & Cattaneo, R. ( 2004; ). Tropism illuminated: lymphocyte-based pathways blazed by lethal morbillivirus through the host immune system. Proc Natl Acad Sci U S A 101, 14216–14221.[CrossRef]
    [Google Scholar]
  154. Ward, B. J., Johnson, R. T., Vaisberg, A., Jauregui, E. & Griffin, D. E. ( 1990; ). Spontaneous proliferation of peripheral mononuclear cells in natural measles virus infection: identification of dividing cells and correlation with mitogen responsiveness. Clin Immunol Immunopathol 55, 315–326.[CrossRef]
    [Google Scholar]
  155. Ward, B. J., Johnson, R. T., Vaisberg, A., Jauregui, E. & Griffin, D. E. ( 1991; ). Cytokine production in vitro and the lymphoproliferative defect of natural measles virus infection. Clin Immunol Immunopathol 61, 236–248.[CrossRef]
    [Google Scholar]
  156. Weidmann, A., Maisner, A., Garten, W., Seufert, M., ter Meulen, V. & Schneider-Schaulies, S. ( 2000a; ). Proteolytic cleavage of the fusion protein but not membrane fusion is required for measles virus-induced immunosuppression in vitro. J Virol 74, 1985–1993.[CrossRef]
    [Google Scholar]
  157. Weidmann, A., Fischer, C., Ohgimoto, S., Ruth, C., ter Meulen, V. & Schneider-Schaulies, S. ( 2000b; ). Measles virus-induced immunosuppression in vitro is independent of complex glycosylation of viral glycoproteins and of hemifusion. J Virol 74, 7548–7553.[CrossRef]
    [Google Scholar]
  158. Weiss, L., Donkova-Petrini, V., Caccavelli, L., Balbo, M., Carbonneil, C. & Levy, Y. ( 2004; ). Human immunodeficiency virus-driven expansion of CD4+CD25+ regulatory T cells which suppress HIV-specific CD4 T-cell responses in HIV-infected patients. Blood 104, 3249–3256.[CrossRef]
    [Google Scholar]
  159. Wickelgren, I. ( 2004; ). Policing the immune system. Science 306, 596–599.[CrossRef]
    [Google Scholar]
  160. Williams, B. G., Cutts, F. T. & Dye, C. ( 1995; ). Measles vaccination policy. Epidemiol Infect 115, 603–621.[CrossRef]
    [Google Scholar]
  161. Yanagi, Y., Cubitt, B. A. & Oldstone, M. B. ( 1992; ). Measles virus inhibits mitogen-induced T cell proliferation but does not directly perturb the T cell activation process inside the cell. Virology 187, 280–289.[CrossRef]
    [Google Scholar]
  162. Yanagi, Y., Ono, N., Tatsuo, H., Hashimoto, K. & Minagawa, H. ( 2002; ). Measles virus receptor SLAM (CD150). Virology 299, 155–161.[CrossRef]
    [Google Scholar]
  163. Yu, Y. & Alwine, J. C. ( 2002; ). Human cytomegalovirus major immediate-early proteins and simian virus 40 large T antigen can inhibit apoptosis through activation of the phosphatidylinositide 3′-OH kinase pathway and the cellular kinase Akt. J Virol 76, 3731–3738.[CrossRef]
    [Google Scholar]
  164. Yuan, H., Veldman, T., Rundell, K. & Schlegel, R. ( 2002; ). Simian virus 40 small tumor antigen activates AKT and telomerase and induces anchorage-independent growth of human epithelial cells. J Virol 76, 10685–10691.[CrossRef]
    [Google Scholar]
  165. Zaffran, Y., Destaing, O., Roux, A., Ory, S., Nheu, T., Jurdic, P., Rabourdin-Combe, C. & Astier, A. L. ( 2001; ). CD46/CD3 costimulation induces morphological changes of human T cells and activation of Vav, Rac, and extracellular signal-regulated kinase mitogen-activated protein kinase. J Immunol 167, 6780–6785.[CrossRef]
    [Google Scholar]
  166. Zelinskyy, G., Robertson, S. J., Schimmer, S., Messer, R. J., Hasenkrug, K. J. & Dittmer, U. ( 2005; ). CD8+ T-cell dysfunction due to cytolytic granule deficiency in persistent Friend retrovirus infection. J Virol 79, 10619–10626.[CrossRef]
    [Google Scholar]
  167. Zhang, X., Glendening, C., Linke, H., Parks, C. L., Brooks, C., Udem, S. A. & Oglesbee, M. ( 2002; ). Identification and characterization of a regulatory domain on the carboxyl terminus of the measles virus nucleocapsid protein. J Virol 76, 8737–8746.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81713-0
Loading
/content/journal/jgv/10.1099/vir.0.81713-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error