1887

Abstract

Interactions between viral proteins are critical for virus viability. Bimolecular fluorescent complementation (BiFC) technique determines protein interactions in real-time under almost normal physiological conditions. The coat protein (CP) of is required for multiple functions in its replication cycle. In this study, the region involved in CP dimerization has been mapped by BiFC in both bacteria and plant tissue. Full-length and C-terminal deleted forms of the CP gene were fused in-frame to the N- and C-terminal fragments of the yellow fluorescent protein. The BiFC analysis showed that a domain located between residues 9 and 27 from the C-end plays a critical role in dimerization. The importance of this C-terminal region in dimer formation and the applicability of the BiFC technique to analyse viral protein interactions are discussed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81696-0
2006-06-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/6/1745.html?itemId=/content/journal/jgv/10.1099/vir.0.81696-0&mimeType=html&fmt=ahah

References

  1. Aparicio, F., Myrta, A., Di Terlizzi, B. & Pallás, V. ( 1999; ). Molecular variability among isolates of Prunus necrotic ringspot virus from different Prunus spp. Phytopathology 89, 991–999.[CrossRef]
    [Google Scholar]
  2. Aparicio, F., Sanchez Navarro, J. A., Olsthoorn, R. C., Pallás, V. & Bol, J. F. ( 2001; ). Recognition of cis-acting sequences in RNA 3 of Prunus necrotic ringspot virus by the replicase of Alfalfa mosaic virus. J Gen Virol 82, 947–951.
    [Google Scholar]
  3. Aparicio, F., Vilar, M., Perez-Paya, E. & Pallás, V. ( 2003; ). The coat protein of prunus necrotic ringspot virus specifically binds to and regulates the conformation of its genomic RNA. Virology 313, 213–223.[CrossRef]
    [Google Scholar]
  4. Bendahmane, A., Querci, M., Kanyuka, K. & Baulcombe, D. C. ( 2000; ). Agrobacterium transient expression system as a tool for the isolation of disease resistance genes: application to the Rx2 locus in potato. Plant J 21, 73–81.[CrossRef]
    [Google Scholar]
  5. Bol, J. F. ( 2005; ). Replication of alfamo- and ilarviruses: role of the coat protein. Annu Rev Phytopathol 43, 39–62.[CrossRef]
    [Google Scholar]
  6. Bracha-Drori, K., Shichrur, K., Katz, A., Oliva, M., Angelovici, R., Yalovsky, S. & Ohad, N. ( 2004; ). Detection of protein–protein interactions in plants using bimolecular fluorescence complementation. Plant J 40, 419–427.[CrossRef]
    [Google Scholar]
  7. Choi, J. W. & Loesch-Fries, L. S. ( 1999; ). Effect of C-terminal mutations of alfalfa mosaic virus coat protein on dimer formation and assembly in vitro. Virology 260, 182–189.[CrossRef]
    [Google Scholar]
  8. Choi, J., Kim, B. S., Zhao, X. & Loesch-Fries, S. ( 2003; ). The importance of alfalfa mosaic virus coat protein dimers in the initiation of replication. Virology 305, 44–49.[CrossRef]
    [Google Scholar]
  9. Codoñer, F. M. & Elena, S. F. ( 2006; ). Evolutionary relationships among members of the Bromoviridae deduced from whole proteome analysis. Arch Virol 151, 299–307.[CrossRef]
    [Google Scholar]
  10. Codoñer, F. M., Cuevas, J. M., Sánchez-Navarro, J. A., Pallás, V. & Elena, S. F. ( 2005; ). Molecular evolution of the plant virus family Bromoviridae based on RNA3-encoded proteins. J Mol Evol 61, 697–705.[CrossRef]
    [Google Scholar]
  11. Herranz, M. C. & Pallas, V. ( 2004; ). RNA-binding properties and mapping of the RNA-binding domain from the movement protein of Prunus necrotic ringspot virus. J Gen Virol 85, 761–768.[CrossRef]
    [Google Scholar]
  12. Herranz, M. C., Sanchez-Navarro, J. A., Sauri, A., Mingarro, I. & Pallas, V. ( 2005; ). Mutational analysis of the RNA-binding domain of the Prunus necrotic ringspot virus (PNRSV) movement protein reveals its requirement for cell-to-cell movement. Virology 339, 31–41.[CrossRef]
    [Google Scholar]
  13. Hoff, B. & Kück, U. ( 2005; ). Use of bimolecular fluorescence complementation to demonstrate transcription factor interaction in nuclei of living cells from the filamentous fungus Acremonium chrysogenum. Curr Genet 47, 132–138.[CrossRef]
    [Google Scholar]
  14. Hu, C. D., Chinenov, Y. & Kerppola, T. K. ( 2002; ). Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell 9, 789–798.[CrossRef]
    [Google Scholar]
  15. Hwang, M. S., Kim, S. H., Lee, J. H., Bae, J. M., Paek, K. H. & Park, Y. I. ( 2005; ). Evidence for interaction between the 2a polymerase protein and the 3a movement protein of Cucumber mosaic virus. J Gen Virol 86, 3171–3177.[CrossRef]
    [Google Scholar]
  16. Hynes, T. R., Tang, L., Mervine, S. M., Sabo, J. L., Yost, E. A., Devreotes, P. N. & Berlot, C. H. ( 2004; ). Visualization of G protein βγ dimers using bimolecular fluorescence complementation demonstrates roles for both β and γ in subcellular targeting. J Biol Chem 279, 30279–30286.[CrossRef]
    [Google Scholar]
  17. Kruseman, J., Kraal, B., Jaspars, E. M. J., Bol, J. F., Brederode, F. T. & Veldstra, H. ( 1971; ). Molecular weight of the coat protein of alfalfa mosaic virus. Biochemistry 10, 447–455.[CrossRef]
    [Google Scholar]
  18. Liu, H., Boulton, M. I., Oparka, K. J. & Davies, J. W. ( 2001; ). Interaction of the movement and coat proteins of Maize streak virus: implications for the transport of viral DNA. J Gen Virol 82, 35–44.
    [Google Scholar]
  19. Neeleman, L., Linthorst, H. J. M. & Bol, J. F. ( 2004; ). Efficient translation of alfamovirus RNAs requires the binding of coat protein dimers to the 3′ termini of the viral RNAs. J Gen Virol 85, 231–240.[CrossRef]
    [Google Scholar]
  20. O'Reilly, E. K., Tang, N. J., Ahlquist, P. & Kao, C. C. ( 1995; ). Biochemical and genetic analyses of the interaction between the helicase-like and polymerase-like proteins of the brome mosaic virus. Virology 214, 59–71.[CrossRef]
    [Google Scholar]
  21. Pallás, V., Sanchez-Navarro, J. A. & Diez, J. ( 1999; ). In vitro evidence for RNA binding properties of the coat protein of prunus necrotic ringspot ilarvirus and their comparison to related and unrelated viruses. Arch Virol 144, 797–803.[CrossRef]
    [Google Scholar]
  22. Pouwels, J., van der Velden, T., Willemse, J., Borst, J. W., van Lent, J., Bisseling, T. & Wellink, J. ( 2004; ). Studies on the origin and structure of tubules made by the movement protein of Cowpea mosaic virus. J Gen Virol 85, 3787–3796.[CrossRef]
    [Google Scholar]
  23. Roudet-Tavert, G., German-Retana, S., Delaunay, T., Delecolle, B., Candresse, T. & Le Gall, O. ( 2002; ). Interaction between potyvirus helper component-proteinase and capsid protein in infected plants. J Gen Virol 83, 1765–1770.
    [Google Scholar]
  24. Sánchez-Navarro, J. A. & Pallás, V. ( 1997; ). Evolutionary relationships in the ilarviruses: nucleotide sequence of prunus necrotic ringspot virus RNA 3. Arch Virol 142, 749–763.[CrossRef]
    [Google Scholar]
  25. Sánchez-Navarro, J. A., Reusken, C. B., Bol, J. F. & Pallás, V. ( 1997; ). Replication of alfalfa mosaic virus RNA 3 with movement and coat protein genes replaced by corresponding genes of Prunus necrotic ringspot ilarvirus. J Gen Virol 78, 3171–3176.
    [Google Scholar]
  26. Sánchez-Navarro, J. A., Herranz, M. C. & Pallás, V. ( 2006; ). Cell-to-cell movement of Alfalfa mosaic virus can be mediated by the movement proteins of Ilar-, bromo-, cucumo-, tobamo- and comoviruses, and does not require virion formation. Virology 346, 66–73.[CrossRef]
    [Google Scholar]
  27. Tenllado, F. & Bol, J. F. ( 2000; ). Genetic dissection of the multiple functions of alfalfa mosaic virus coat protein in viral RNA replication, encapsidation, and movement. Virology 268, 29–40.[CrossRef]
    [Google Scholar]
  28. Van Der Heijden, M. W., Carette, J. E., Reinhoud, P. J., Haegi, A. & Bol, J. F. ( 2001; ). Alfalfa mosaic virus replicase proteins P1 and P2 interact and colocalize at the vacuolar membrane. J Virol 75, 1879–1887.[CrossRef]
    [Google Scholar]
  29. Walter, M., Chaban, C., Schutze, K. & 9 other authors ( 2004; ). Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J 40, 428–438.[CrossRef]
    [Google Scholar]
  30. Wilson, C. G., Magliery, T. J. & Regan, L. ( 2004; ). Detecting protein-protein interactions with GFP-fragment reassembly. Nat Methods 1, 255–262.[CrossRef]
    [Google Scholar]
  31. Zhao, X., Fox, J. M., Olson, N. H., Baker, T. S. & Young, M. J. ( 1995; ). In vitro assembly of cowpea chlorotic mottle virus from coat protein expressed in Escherichia coli and in vitro-transcribed viral cDNA. Virology 207, 486–494.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81696-0
Loading
/content/journal/jgv/10.1099/vir.0.81696-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error