1887

Abstract

Previous examination of the effect of TCF-4 on transcription of the human immunodeficiency virus type 1 (HIV-1) promoter in human astrocytic cells found that TCF-4 affects the HIV-1 promoter through the GC-rich domain (nt −80 to nt −68). Here, the physical interaction and a functional consequence of TCF4–Sp1 contact were characterized. It was shown that expression of TCF-4 in U-87 MG (human astrocytic) cells decreased basal and Sp1-mediated transcription of the HIV-1 promoter. Results from a GST pull-down assay, as well as combined immunoprecipitation and Western blot analysis of protein extracts from U-87 MG cells, revealed an interaction of Sp1 with TCF-4. Using protein chromatography, the region of Sp1 that contacts TCF-4 was mapped to aa 266–350. It was also found that, in cell-free extracts, TCF-4 prevented dsDNA-dependent protein kinase (DNA-PK)-mediated Sp1 phosphorylation. Surprisingly, TCF-4 failed to decrease Sp1-mediated transcription of the HIV-1 long terminal repeat (LTR) and Sp1 phosphorylation in cells expressing HIV-1 Tat. Results from immunoprecipitation/Western blotting demonstrated that TCF-4 lost its ability to interact with Sp1, but not with Tat, in Tat-transfected cells. Taken together, these findings suggest that activity at the HIV-1 promoter is influenced by phosphorylation of Sp1, which is affected by Tat and DNA-PK. Interactions among TCF-4, Sp1 and/or Tat may determine the level of viral gene transcription in human astrocytic cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81691-0
2006-06-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/6/1613.html?itemId=/content/journal/jgv/10.1099/vir.0.81691-0&mimeType=html&fmt=ahah

References

  1. Abraham, S., Sweet, T., Sawaya, B. E., Rappaport, J., Khalili, K. & Amini, S. ( 2005; ). Cooperative interaction of C/EBP beta and Tat modulates MCP-1 gene transcription in astrocytes. J Neuroimmunol 160, 219–227.[CrossRef]
    [Google Scholar]
  2. Amini, S., Clavo, A., Nadraga, Y., Giordano, A., Khalili, K. & Sawaya, B. ( 2002; ). Interplay between cdk9 and NF-kappaB factors determines the level of HIV-1 gene transcription in astrocytic cells. Oncogene 21, 5797–5803.[CrossRef]
    [Google Scholar]
  3. Amini, S., Saunders, M., Kelley, K., Khalili, K. & Sawaya, B. E. ( 2004; ). Interplay between HIV-1 Vpr and Sp1 modulates p21(WAF1) gene expression in human astrocytes. J Biol Chem 279, 46046–46056.[CrossRef]
    [Google Scholar]
  4. Amini, S., Mameli, G., Del Valle, L., Skowronska, A., Reiss, K., Gelman, B. B., White, M. K., Khalili, K. & Sawaya, B. E. ( 2005; ). p73 Interacts with human immunodeficiency virus type 1 Tat in astrocytic cells and prevents its acetylation on lysine 28. Mol Cell Biol 25, 8126–8138.[CrossRef]
    [Google Scholar]
  5. Athanikar, J. N., Sanchez, H. B. & Osborne, T. F. ( 1997; ). Promoter selective transcriptional synergy mediated by sterol regulatory element binding protein and Sp1: a critical role for the Btd domain of Sp1. Mol Cell Biol 17, 5193–5200.
    [Google Scholar]
  6. Barker, N., Hurlstone, A., Musisi, H., Miles, A., Bienz, M. & Clevers, H. ( 2001; ). The chromatin remodelling factor Brg-1 interacts with beta-catenin to promote target gene activation. EMBO J 20, 4935–4943.[CrossRef]
    [Google Scholar]
  7. Bouwman, P. & Philipsen, S. ( 2002; ). Regulation of the activity of Sp1-related transcription factors. Mol Cell Endocrinol 195, 27–38.[CrossRef]
    [Google Scholar]
  8. Brady, J. & Kashanchi, F. ( 2005; ). Tat gets the “green” light on transcription initiation. Retrovirology 2, 69.[CrossRef]
    [Google Scholar]
  9. Brantjes, H., Roose, J., van de Wetering, M. & Clevers, H. ( 2001; ). All Tcf HMG box transcription factors interact with Groucho-related co-repressors. Nucleic Acids Res 29, 1410–1419.[CrossRef]
    [Google Scholar]
  10. Bres, V., Gomes, N., Pickle, L. & Jones, K. A. ( 2005; ). A human splicing factor, SKIP, associates with P-TEFb and enhances transcription elongation by HIV-1 Tat. Genes Dev 19, 1211–1226.[CrossRef]
    [Google Scholar]
  11. Cavallo, R. A., Cox, R. T., Moline, M. M., Roose, J., Polevoy, G. A., Clevers, H., Peifer, M. & Bejsovec, A. ( 1998; ). Drosophila Tcf and Groucho interact to repress wingless signalling activity. Nature 395, 604–608.[CrossRef]
    [Google Scholar]
  12. Chang, Y. C., Illenye, S. & Heintz, N. H. ( 2001; ). Cooperation of E2F-p130 and Sp1-pRb complexes in repression of the Chinese hamster dhfr gene. Mol Cell Biol 21, 1121–1131.[CrossRef]
    [Google Scholar]
  13. Chun, R. F. & Jeang, K. T. ( 1996; ). Requirements for RNA polymerase II carboxyl-terminal domain for activated transcription of human retroviruses human T-cell lymphotropic virus I and HIV-1. J Biol Chem 271, 27888–27894.[CrossRef]
    [Google Scholar]
  14. Chun, R. F., Semmes, O. J., Neuveut, C. & Jeang, K. T. ( 1998; ). Modulation of Sp1 phosphorylation by human immunodeficiency virus type 1 Tat. J Virol 72, 2615–2629.
    [Google Scholar]
  15. Cicchillitti, L., Jimenez, S. A., Sala, A. & Saitta, B. ( 2004; ). B-Myb acts as a repressor of human COL1A1 collagen gene expression by interacting with Sp1 and CBF factors in scleroderma fibroblasts. Biochem J 378, 609–616.[CrossRef]
    [Google Scholar]
  16. Courey, A. J. & Tjian, R. ( 1988; ). Analysis of Sp1 in vivo reveals multiple transcriptional domains, including a novel glutamine-rich activation motif. Cell 55, 887–898.[CrossRef]
    [Google Scholar]
  17. Datta, P. K., Raychaudhuri, P. & Bagchi, S. ( 1995; ). Association of p107 with Sp1: genetically separable regions of p107 are involved in regulation of E2F- and Sp1-dependent transcription. Mol Cell Biol 15, 5444–5452.
    [Google Scholar]
  18. Ding, Z., Gillespie, L. L., Mercer, F. C. & Paterno, G. D. ( 2004; ). The SANT domain of human MI-ER1 interacts with Sp1 to interfere with GC box recognition and repress transcription from its own promoter. J Biol Chem 279, 28009–28016.[CrossRef]
    [Google Scholar]
  19. Dovat, S., Ronni, T., Russell, D., Ferrini, F., Cobb, B. S. & Smale, S. T. ( 2002; ). A common mechanism for mitotic inactivation of C2H2 zinc finger DNA-binding domains. Genes Dev 16, 2985–2990.[CrossRef]
    [Google Scholar]
  20. Dynan, W. S. & Tjian, R. ( 1983; ). The promoter-specific transcription factor Sp1 binds to upstream sequences in the SV40 early promoter. Cell 35, 79–87.[CrossRef]
    [Google Scholar]
  21. Emili, A., Greenblatt, J. & Ingles, C. J. ( 1994; ). Species-specific interaction of the glutamine-rich activation domains of Sp1 with the TATA box-binding protein. Mol Cell Biol 14, 1582–1593.
    [Google Scholar]
  22. Fojas de Borja, P., Collins, N. K., Du, P., Azizkhan-Clifford, J. & Mudryj, M. ( 2001; ). Cyclin A-CDK phosphorylates Sp1 and enhances Sp1-mediated transcription. EMBO J 20, 5737–5747.[CrossRef]
    [Google Scholar]
  23. Giese, K., Cox, J. & Grosschedl, R. ( 1992; ). The HMG domain of lymphoid enhancer factor 1 bends DNA and facilitates assembly of functional nucleoprotein structures. Cell 69, 185–195.[CrossRef]
    [Google Scholar]
  24. Graham, T. A., Weaver, C., Mao, F., Kimelman, D. & Xu, W. ( 2000; ). Crystal structure of a beta-catenin/Tcf complex. Cell 103, 885–896.[CrossRef]
    [Google Scholar]
  25. Graña, X., De Luca, A., Sang, N., Fu, Y., Claudio, P. P., Rosenblatt, J., Morgan, D. O. & Giordano, A. ( 1994; ). PITALRE, a nuclear CDC2-related protein kinase that phosphorylates the retinoblastoma protein in vitro. Proc Natl Acad Sci U S A 91, 3834–3838.[CrossRef]
    [Google Scholar]
  26. Gregory, R. C., Taxman, D. J., Seshasayee, D., Kensinger, M. H., Bieker, J. J. & Wojchowski, D. M. ( 1996; ). Functional interaction of GATA1 with erythroid Kruppel-like factor and Sp1 at defined erythroid promoters. Blood 87, 1793–1801.
    [Google Scholar]
  27. Hartley, K. O., Gell, D., Smith, G. C. & 7 other authors ( 1995; ). DNA-dependent protein kinase catalytic subunit: a relative of phosphatidylinositol 3-kinase and the ataxia telangiectasia gene product. Cell 82, 849–856.[CrossRef]
    [Google Scholar]
  28. Hasleton, M. D., Ibbitt, J. C. & Hurst, H. C. ( 2003; ). Characterization of the human activator protein-2gamma (AP-2gamma) gene: control of expression by Sp1/Sp3 in breast tumour cells. Biochem J 373, 925–932.[CrossRef]
    [Google Scholar]
  29. Hecht, A., Vleminckx, K., Stemmler, M. P., van Roy, F. & Kemler, R. ( 2000; ). The p300/CBP acetyltransferases function as transcriptional coactivators of beta-catenin in vertebrates. EMBO J 19, 1839–1850.[CrossRef]
    [Google Scholar]
  30. Hilton, T. L. & Wang, E. H. ( 2003; ). Transcription factor IID recruitment and Sp1 activation. Dual function of TAF1 in cyclin D1 transcription. J Biol Chem 278, 12992–13002.[CrossRef]
    [Google Scholar]
  31. Hurlstone, A. & Clevers, H. ( 2002; ). T-cell factors: turn-ons and turn-offs. EMBO J 21, 2303–2311.[CrossRef]
    [Google Scholar]
  32. Ishitani, T., Ninomiya-Tsuji, J. & Matsumoto, K. ( 2003; ). Regulation of lymphoid enhancer factor 1/T-cell factor by mitogen-activated protein kinase-related Nemo-like kinase-dependent phosphorylation in Wnt/beta-catenin signaling. Mol Cell Biol 23, 1379–1389.[CrossRef]
    [Google Scholar]
  33. Jackson, S. P. & Tjian, R. ( 1988; ). O-glycosylation of eukaryotic transcription factors: implications for mechanisms of transcriptional regulation. Cell 55, 125–133.[CrossRef]
    [Google Scholar]
  34. Jeang, K. T., Chun, R., Lin, N. H., Gatignol, A., Glabe, C. G. & Fan, H. (1993; ). In vitro and in vivo binding of human immunodeficiency virus type 1 Tat protein and Sp1 transcription factor. J Virol 67, 6224–6233.
    [Google Scholar]
  35. Johnson-Pais, T., Degnin, C. & Thayer, M. J. ( 2001; ). pRB induces Sp1 activity by relieving inhibition mediated by MDM2. Proc Natl Acad Sci U S A 98, 2211–2216.[CrossRef]
    [Google Scholar]
  36. Jones, K. A., Kadonaga, J. T., Luciw, P. A. & Tjian, R. ( 1986; ). Activation of the AIDS retrovirus promoter by the cellular transcription factor, Sp1. Science 232, 755–759.[CrossRef]
    [Google Scholar]
  37. Karlseder, J., Rotheneder, H. & Wintersberger, E. ( 1996; ). Interaction of Sp1 with the growth- and cell cycle-regulated transcription factor E2F. Mol Cell Biol 16, 1659–1667.
    [Google Scholar]
  38. Kashanchi, F., Piras, G., Radonovich, M. F., Duvall, J. F., Fattaey, A., Chiang-Cheng, M., Roeder, R. G. & Brady, J. N. ( 1994; ). Direct interaction of human TFIID with the HIV-1 transactivator Tat. Nature 367, 295–299.[CrossRef]
    [Google Scholar]
  39. Kim, Y. S., Kim, J. M., Jung, D. L. & 9 other authors ( 2005; ). Artificial zinc finger fusions targeting Sp1-binding sites and the trans-activator-responsive element potently repress transcription and replication of HIV-1. J Biol Chem 280, 21545–21552.[CrossRef]
    [Google Scholar]
  40. Korinek, V., Barker, N., Morin, P. J., van Wichen, D., de Weger, R., Kinzler, K. W., Vogelstein, B. & Clevers, H. ( 1997; ). Constitutive transcriptional activation by a β-catenin-Tcf complex in APC−/− colon carcinoma. Science 275, 1784–1787.[CrossRef]
    [Google Scholar]
  41. Lee, J. S., Galvin, K. M. & Shi, Y. ( 1993; ). Evidence for physical interaction between the zinc-finger transcription factors YY1 and Sp1. Proc Natl Acad Sci U S A 90, 6145–6149.[CrossRef]
    [Google Scholar]
  42. Lee, D. K., Suh, D., Edenberg, H. J. & Hur, M. W. ( 2002; ). POZ domain transcription factor, FBI-1, represses transcription of ADH5/FDH by interacting with the zinc finger and interfering with DNA binding activity of Sp1. J Biol Chem 277, 26761–26768.[CrossRef]
    [Google Scholar]
  43. Leggett, R. W., Armstrong, S. A., Barry, D. & Mueller, C. R. ( 1995; ). Sp1 is phosphorylated and its DNA binding activity down-regulated upon terminal differentiation of the liver. J Biol Chem 270, 25879–25884.[CrossRef]
    [Google Scholar]
  44. Lin, S. Y., Black, A. R., Kostic, D., Pajovic, S., Hoover, C. N. & Azizkhan, J. C. ( 1996; ). Cell cycle-regulated association of E2F1 and Sp1 is related to their functional interaction. Mol Cell Biol 16, 1668–1675.
    [Google Scholar]
  45. Loregian, A., Bortolozzo, K., Boso, S., Caputo, A. & Palu, G. ( 2003; ). Interaction of Sp1 transcription factor with HIV-1 Tat protein: looking for cellular partners. FEBS Lett 543, 61–65.[CrossRef]
    [Google Scholar]
  46. Macleod, D., Charlton, J., Mullins, J. & Bird, A. P. ( 1994; ). Sp1 sites in the mouse aprt gene promoter are required to prevent methylation of the CpG island. Genes Dev 8, 2282–2292.[CrossRef]
    [Google Scholar]
  47. Milanini-Mongiat, J., Pouyssegur, J. & Pages, G. ( 2002; ). Identification of two Sp1 phosphorylation sites for p42/p44 mitogen-activated protein kinases: their implication in vascular endothelial growth factor gene transcription. J Biol Chem 277, 20631–20639.[CrossRef]
    [Google Scholar]
  48. Miyagishi, M., Fujii, R., Hatta, M., Yoshida, E., Araya, N., Nagafuchi, A., Ishihara, S., Nakajima, T. & Fukamizu, A. ( 2000; ). Regulation of Lef-mediated transcription and p53-dependent pathway by associating beta-catenin with CBP/p300. J Biol Chem 275, 35170–35175.[CrossRef]
    [Google Scholar]
  49. Morin, P. J., Sparks, A. B., Korinek, V., Barker, N., Clevers, H., Vogelstein, B. & Kinzler, K. W. ( 1997; ). Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275, 1787–1790.[CrossRef]
    [Google Scholar]
  50. Naar, A. M., Beaurang, P. A., Robinson, K. M., Oliner, J. D., Avizonis, D., Scheek, S., Zwicker, J., Kadonaga, J. T. & Tjian, R. ( 1998; ). Chromatin, TAFs, and a novel multiprotein coactivator are required for synergistic activation by Sp1 and SREBP-1a in vitro. Genes Dev 12, 3020–3031.[CrossRef]
    [Google Scholar]
  51. Pascal, E. & Tjian, R. ( 1991; ). Different activation domains of Sp1 govern formation of multimers and mediate transcriptional synergism. Genes Dev 5, 1646–1656.[CrossRef]
    [Google Scholar]
  52. Perkins, N. D., Agranoff, A. B., Pascal, E. & Nabel, G. J. ( 1994; ). An interaction between the DNA-binding domains of RelA(p65) and Sp1 mediates human immunodeficiency virus gene activation. Mol Cell Biol 14, 6570–6583.
    [Google Scholar]
  53. Peruzzi, F., Bergonzini, V., Aprea, S., Reiss, K., Sawaya, B. E., Rappaport, J., Amini, S. & Khalili, K. ( 2005; ). Cross talk between growth factors and viral and cellular factors alters neuronal signaling pathways: Implication for HIV-associated dementia. Brain Res Brain Res Rev 50, 114–125.[CrossRef]
    [Google Scholar]
  54. Poy, F., Lepourcelet, M., Shivdasani, R. A. & Eck, M. J. ( 2001; ). Structure of a human Tcf4-beta-catenin complex. Nat Struct Biol 8, 1053–1057.[CrossRef]
    [Google Scholar]
  55. Rubinfeld, B., Albert, I., Porfiri, E., Fiol, C., Munemitsu, S. & Polakis, P. ( 1996; ). Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science 272, 1023–1026.[CrossRef]
    [Google Scholar]
  56. Sawaya, B. E., Khalili, K. & Amini, S. ( 1998a; ). Transcription of the human immunodeficiency virus type 1 (HIV-1) promoter in central nervous system cells: effect of YB-1 on expression of the HIV-1 long terminal repeat. J Gen Virol 79, 239–246.
    [Google Scholar]
  57. Sawaya, B. E., Khalili, K., Mercer, W. E., Denisova, L. & Amini, S. ( 1998b; ). Cooperative actions of HIV-1 Vpr and p53 modulate viral gene transcription. J Biol Chem 273, 20052–20057.[CrossRef]
    [Google Scholar]
  58. Seto, E., Lewis, B. & Shenk, T. ( 1993; ). Interaction between transcription factors Sp1 and YY1. Nature 365, 462–464.[CrossRef]
    [Google Scholar]
  59. Suzuki, T., Muto, S., Miyamoto, S., Aizawa, K., Horikoshi, M. & Nagai, R. ( 2003; ). Functional interaction of the DNA-binding transcription factor Sp1 through its DNA-binding domain with the histone chaperone TAF-I. J Biol Chem 278, 28758–28764.[CrossRef]
    [Google Scholar]
  60. Sweet, T., Sawaya, B. E., Khalili, K. & Amini, S. ( 2005; ). Interplay between NFBP and NF-kappaB modulates tat activation of the LTR. J Cell Physiol 204, 375–380.[CrossRef]
    [Google Scholar]
  61. Vallian, S., Chin, K. V. & Chang, K. S. ( 1998; ). The promyelocytic leukemia protein interacts with Sp1 and inhibits its transactivation of the epidermal growth factor receptor promoter. Mol Cell Biol 18, 7147–7156.
    [Google Scholar]
  62. Van de Wetering, M., Cavallo, R., Dooijes, D. & 10 other authors ( 1997; ). Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 88, 789–799.[CrossRef]
    [Google Scholar]
  63. Waldman, T., Kinzler, K. W. & Vogelstein, B. ( 1995; ). p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res 55, 5187–5190.
    [Google Scholar]
  64. Wei, P., Garber, M. E., Fang, S. M., Fischer, W. H. & Jones, K. A. ( 1998; ). A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell 92, 451–462.[CrossRef]
    [Google Scholar]
  65. Wells, J. & Farnham, P. J. ( 2002; ). Characterizing transcription factor binding sites using formaldehyde crosslinking and immunoprecipitation. Methods 26, 48–56.[CrossRef]
    [Google Scholar]
  66. Wortman, B., Darbinian, N., Sawaya, B. E., Khalili, K. & Amini, S. ( 2002; ). Evidence for regulation of long terminal repeat transcription by Wnt transcription factor TCF-4 in human astrocytic cells. J Virol 76, 11159–11165.[CrossRef]
    [Google Scholar]
  67. Yang, X., Su, K., Roos, M. D., Chang, Q., Paterson, A. J. & Kudlow, J. E. ( 2001; ). O-linkage of N-acetylglucosamine to Sp1 activation domain inhibits its transcriptional capability. Proc Natl Acad Sci U S A 98, 6611–6616.[CrossRef]
    [Google Scholar]
  68. Zhu, W.-G., Srinivasan, K., Dai, Z. & 7 other authors ( 2003; ). Methylation of adjacent CpG sites affects Sp1/Sp3 binding and activity in the p21Cip1 promoter. Mol Cell Biol 23, 4056–4065.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81691-0
Loading
/content/journal/jgv/10.1099/vir.0.81691-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error