1887

Abstract

Studies of infectious salmon anemia virus (ISAV; genus , family ) haemagglutinin–esterase (HE) gene sequences have shown that this gene provides a tool for genotyping and, hence, a tool to follow the dissemination of ISAV. The problem with using only the HE gene is that ISAV has a segmented genome and one segment may not tell the whole story about the origin and history of ISAV from outbreaks. To achieve a better genotyping system, the present study has focused on segment 5, the fusion (F) protein gene, which contains sequence variation at about the same level as the HE gene. The substitution rates of the HE and F gene sequences, based on 54 Norwegian ISAV isolates, are 6.1(±0.3)×10 and 8.6(±5.0)×10 nt per site per year, respectively. The results of phylogenetic analysis of the two gene segments have been compared and, with the exception of a few cases of reassortment, they tell the same story about the ISAV isolates. A combination of the two segments is recommended as a tool for future genotyping of ISAV. Inserts (INs) of 8–11 aa may occur close to the cleavage site of the precursor F protein in some ISAV isolates. The nucleotide sequence of two of these INs shows 100 % sequence identity to parts of the 5′ end of the F protein gene, whilst the third IN is identical to a part of the nucleoprotein gene. This shows that recombination is one of the evolutionary mechanisms shaping the genome of ISAV. The possible importance of the INs with respect to virulence remains uncertain.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81687-0
2006-07-01
2019-12-12
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/7/2031.html?itemId=/content/journal/jgv/10.1099/vir.0.81687-0&mimeType=html&fmt=ahah

References

  1. Anonymous ( 2005; ). Field trial with ISAV-diseased broodfish of Atlantic salmon. http://www.salmobreed.no
  2. Aspehaug, V., Mikalsen, A. B., Snow, M., Biering, E. & Villoing, S. ( 2005; ). Characterization of the infectious salmon anemia virus fusion protein. J Virol 79, 12544–12553.[CrossRef]
    [Google Scholar]
  3. Banks, J., Speidel, E. C., McCauley, J. W. & Alexander, D. J. ( 2000; ). Phylogenetic analysis of H7 haemagglutinin subtype influenza A viruses. Arch Virol 145, 1047–1058.[CrossRef]
    [Google Scholar]
  4. Bergstrom, C. T., McElhany, P. & Real, L. A. ( 1999; ). Transmission bottlenecks as determinants of virulence in rapidly evolving pathogens. Proc Natl Acad Sci U S A 96, 5095–5100.[CrossRef]
    [Google Scholar]
  5. Brown, E. G. ( 2000; ). Influenza virus genetics. Biomed Pharmacother 54, 196–209.[CrossRef]
    [Google Scholar]
  6. Cunningham, C. O., Gregory, A., Black, J., Simpson, I. & Raynard, R. S. ( 2002; ). A novel variant of the infectious salmon anaemia virus (ISAV) haemagglutinin gene suggests mechanisms for virus diversity. Bull Eur Ass Fish Pathol 22, 366–374.
    [Google Scholar]
  7. Devold, M., Krossøy, B., Aspehaug, V. & Nylund, A. ( 2000; ). Use of RT-PCR for diagnosis of infectious salmon anaemia virus (ISAV) in carrier sea trout Salmo trutta after experimental infection. Dis Aquat Organ 40, 9–18.[CrossRef]
    [Google Scholar]
  8. Devold, M., Falk, K., Dale, O. B., Krossøy, B., Biering, E., Aspehaug, V., Nilsen, F. & Nylund, A. ( 2001; ). Strain variation, based on the hemagglutinin gene, in Norwegian ISA virus isolates collected from 1987 to 2001: indications of recombination. Dis Aquat Organ 47, 119–128.[CrossRef]
    [Google Scholar]
  9. Einer-Jensen, K., Ahrens, P., Forsber, R. & Lorenzen, N. ( 2004; ). Evolution of the fish rhabdovirus viral haemorrhagic septicaemia vius. J Gen Virol 85, 1167–1179.[CrossRef]
    [Google Scholar]
  10. Einer-Jensen, K., Winton, J. & Lorenzen, N. ( 2005; ). Genotyping of the fish rhabdovirus, viral haemorrhagic septicaemia virus, by restriction fragment length polymorphisms. Vet Microbiol 106, 167–178.[CrossRef]
    [Google Scholar]
  11. Falk, K., Aspehaug, V., Vlasak, R. & Endresen, C. ( 2004; ). Identification and characterization of viral structural proteins of infectious salmon anemia virus. J Virol 78, 3063–3071.[CrossRef]
    [Google Scholar]
  12. Gorman, O. T., Bean, W. J. & Webster, R. G. ( 1992; ). Evolutionary processes in influenza viruses: divergence, rapid evolution, and stasis. Curr Top Microbiol Immunol 176, 75–97.
    [Google Scholar]
  13. Hasegawa, M., Kishino, H. & Yano, T. ( 1985; ). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22, 160–174.[CrossRef]
    [Google Scholar]
  14. Hellebø, A., Vilas, U., Falk, K. & Vlasak, R. ( 2004; ). Infectious salmon anemia virus specifically binds to and hydrolyzes 4-O-acetylated sialic acids. J Virol 78, 3055–3062.[CrossRef]
    [Google Scholar]
  15. Hodneland, K., Bratland, A., Christie, K. E., Endresen, C. & Nylund, A. ( 2005; ). New subtype of salmonid alphavirus (SAV), Togaviridae, from Atlantic salmon Salmo salar and rainbow trout Oncorhynchus mykiss in Norway. Dis Aquat Organ 66, 113–120.[CrossRef]
    [Google Scholar]
  16. Jenkins, G. M., Rambaut, A., Pybus, O. G. & Holmes, E. C. ( 2002; ). Rates of molecular evolution in RNA viruses: a quantitative phylogenetic analysis. J Mol Evol 54, 156–165.[CrossRef]
    [Google Scholar]
  17. Kibenge, F. S. B., Kibenge, M. J. T., McKenna, P. K., Stothard, P., Marshall, R., Cusack, R. R. & McGeachy, S. ( 2001; ). Antigenic variation among isolates of infectious salmon anaemia virus correlates with genetic variation of the viral haemagglutinin gene. J Gen Virol 82, 2869–2879.
    [Google Scholar]
  18. Kibenge, M. J. T., Munir, K. & Kibenge, F. S. B. ( 2005; ). Constitutive expression of Atlantic salmon Mx1 protein in CHSE-214 cells confers resistance to infectious salmon anaemia virus. Virol J 2, 75.[CrossRef]
    [Google Scholar]
  19. Krossøy, B., Hordvik, I., Nilsen, F., Nylund, A. & Endresen, C. ( 1999; ). The putative polymerase sequence of infectious salmon anemia virus suggests a new genus within the Orthomyxoviridae. J Virol 73, 2136–2142.
    [Google Scholar]
  20. Krossøy, B., Nilsen, F., Falk, K., Endresen, C. & Nylund, A. ( 2001a; ). Phylogenetic analysis of infectious salmon anaemia virus isolates from Norway, Canada and Scotland. Dis Aquat Organ 44, 1–6.[CrossRef]
    [Google Scholar]
  21. Krossøy, B., Devold, M., Sanders, L. & 7 other authors ( 2001b; ). Cloning and identification of the infectious salmon anaemia virus haemagglutinin. J Gen Virol 82, 1757–1765.
    [Google Scholar]
  22. Kurath, G., Garver, K. A., Troyer, R. M., Emmenegger, E. J., Einer-Jensen, K. & Anderson, E. D. ( 2003; ). Phylogeography of infectious haematopoietic necrosis virus in North America. J Gen Virol 84, 803–814.[CrossRef]
    [Google Scholar]
  23. Lamb, R. A. & Krug, R. M. ( 2001; ). Orthomyxoviridae: the viruses and their replication. In Fields Virology, 4th edn, vol. 1, pp. 1487–1531. Edited by D. M. Knipe & P. M. Howley. Philadelphia, PA: Lippincott Williams & Wilkins.
  24. Lupas, A., Van Dyke, M. & Stock, J. ( 1991; ). Predicting coiled coils from protein sequences. Science 252, 1162–1164.[CrossRef]
    [Google Scholar]
  25. Mjaaland, S., Markussen, T., Sindre, H., Kjøglum, S., Dannevig, B. H., Larsen, S. & Grimholt, U. ( 2005; ). Susceptibility and immune responses following experimental infection of MHC compatible Atlantic salmon (Salmo salar L.) with different infectious salmon anaemia virus isolates. Arch Virol 150, 2195–2216.[CrossRef]
    [Google Scholar]
  26. Nylund, A. & Jakobsen, P. ( 1995; ). Sea trout as a carrier of infectious salmon anaemia virus. J Fish Biol 47, 174–176.[CrossRef]
    [Google Scholar]
  27. Nylund, A., Alexandersen, S., Løvik, P. & Jakobsen, P. ( 1994; ). The response of brown trout (Salmo trutta L.) to repeated challenge with infectious salmon anaemia (ISA). Bull Eur Ass Fish Pathol 14, 167–170.
    [Google Scholar]
  28. Nylund, A., Kvenseth, A. M., Krossøy, B. & Hodneland, K. ( 1997; ). Rainbow trout (Onchorhynchus mykiss, Walbaum, 1792): a carrier of infectious salmon anaemia (ISAV). J Fish Dis 20, 275–279.[CrossRef]
    [Google Scholar]
  29. Nylund, A., Devold, M., Plarre, H., Isdal, E. & Aarseth, M. ( 2003; ). Emergence and maintenance of infectious salmon anaemia virus (ISAV) in Europe: a new hypothesis. Dis Aquat Organ 56, 11–24.[CrossRef]
    [Google Scholar]
  30. Page, R. D. M. ( 1996; ). TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12, 357–358.
    [Google Scholar]
  31. Plarre, H., Devold, M., Snow, M. & Nylund, A. ( 2005; ). Prevalence of infectious salmon anaemia virus (ISAV) in wild salmonids in western Norway. Dis Aquat Organ 66, 71–79.[CrossRef]
    [Google Scholar]
  32. Posada, D. & Crandall, K. A. ( 1998; ). modeltest: testing the model of DNA substitution. Bioinformatics 9, 817–818.
    [Google Scholar]
  33. Rambaut, A. ( 2000; ). Estimating the rate of molecular evolution: incorporating non-contemporaneous sequences into maximum likelihood phylogenies. Bioinformatics 16, 395–399.[CrossRef]
    [Google Scholar]
  34. Röhm, C., Horimoto, T., Kawaoka, Y., Süss, J. & Webster, R. G. ( 1995; ). Do hemagglutinin genes of highly pathogenic avian influenza viruses constitute unique phylogenetic lineages? Virology 209, 664–670.[CrossRef]
    [Google Scholar]
  35. Rolland, J. B. & Winton, J. R. ( 2003; ). Relative resistance of Pacific salmon to infectious salmon anaemia virus. J Fish Dis 26, 511–520.[CrossRef]
    [Google Scholar]
  36. Skehel, J. J. & Wiley, D. C. ( 2000; ). Receptor binding and membranes fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem 69, 531–569.[CrossRef]
    [Google Scholar]
  37. Snow, M., Raynard, R. S. & Bruno, D. W. ( 2001; ). Comparative susceptibility of Artic char (Salvelinus alpinus), rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta) to the Scottish isolate of infectious salmon anaemia virus. Aquaculture 196, 47–54.[CrossRef]
    [Google Scholar]
  38. Snow, M., Bain, N., Black, J., Taupin, V., Cunningham, C. O., King, J. A., Skall, H. F. & Raynard, R. S. ( 2004; ). Genetic population structure of marine viral haemorrhagic septicaemia virus (VHSV). Dis Aquat Organ 61, 11–21.[CrossRef]
    [Google Scholar]
  39. Suarez, D. L., Senne, D. A., Banks, J. & 11 other authors ( 2004; ). Recombination resulting in virulence shift in avian influenza outbreak, Chile. Emerg Infect Dis 10, 693–699.[CrossRef]
    [Google Scholar]
  40. Swofford, D. L. ( 1998; ). paup*: Phylogenetic analysis using parsimony (*and other methods), version 4.0. Sunderland, MA: Sinauer Associates.
  41. Thiéry, R., Cozien, J., de Boisséson, C., Kerbart-Boscher, S. & Névarez, L. ( 2004; ). Genomic classification of new betanodavirus isolates by phylogenetic analysis of the coat protein gene suggests a low host-fish species specificity. J Gen Virol 85, 3079–3087.[CrossRef]
    [Google Scholar]
  42. Webster, R. G., Bean, W. J., Gorman, O. T., Chambers, T. M. & Kawaoka, Y. ( 1992; ). Evolution and ecology of influenza A viruses. Microbiol Rev 56, 152–179.
    [Google Scholar]
  43. Yang, Z. ( 1997; ). paml: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13, 555–556.
    [Google Scholar]
  44. Zambon, M. C. ( 1999; ). Epidemiology and pathogenesis of influenza. J Antimicrob Chemother 44 (Suppl. B), 3–9.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81687-0
Loading
/content/journal/jgv/10.1099/vir.0.81687-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error