1887

Abstract

Signalling lymphocyte activation molecule (SLAM) acts as a cellular receptor for (MV). The recombinant MV, based on a SLAM-using clinical isolate in which asparagine at position 481 of the haemagglutinin was replaced with tyrosine, was generated. Characterization of this recombinant virus revealed that the N481Y substitution in the haemagglutinin allowed it to utilize CD46 as an alternative receptor, but that its ability to use CD46 was rather low in CD46 SLAM cell lines compared with that of the recombinant virus possessing the haemagglutinin of the Edmonston laboratory strain. Thus, an N481Y substitution alone may not be sufficient to make SLAM-using MVs use CD46 efficiently, suggesting that further substitutions in the haemagglutinin are required for them to grow efficiently in CD46 cells like the Edmonston strain. This may be a reason why few CD46-using MVs are detected .

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81682-0
2006-06-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/6/1643.html?itemId=/content/journal/jgv/10.1099/vir.0.81682-0&mimeType=html&fmt=ahah

References

  1. Anderson B. D., Nakamura T., Russell S. J., Peng K. W. 2004; High CD46 receptor density determines preferential killing of tumor cells by oncolytic measles virus. Cancer Res 64:4919–4926 [CrossRef]
    [Google Scholar]
  2. Bartz R., Brinckmann U., Dunster L. M., Rima B., Ter Meulen V., Schneider-Schaulies J. 1996; Mapping amino acids of the measles virus hemagglutinin responsible for receptor (CD46) downregulation. Virology 224:334–337 [CrossRef]
    [Google Scholar]
  3. Dörig R. E., Marcil A., Chopra A., Richardson C. D. 1993; The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 75:295–305 [CrossRef]
    [Google Scholar]
  4. Erlenhöfer C., Wurzer W. J., Loffler S., Schneider-Schaulies S., ter Meulen V., Schneider-Schaulies J. 2001; CD150 (SLAM) is a receptor for measles virus but is not involved in viral contact-mediated proliferation inhibition. J Virol 75:4499–4505 [CrossRef]
    [Google Scholar]
  5. Erlenhöfer C., Duprex W. P., Rima B. K., ter Meulen V., Schneider-Schaulies J. 2002; Analysis of receptor (CD46, CD150) usage by measles virus. J Gen Virol 83:1431–1436
    [Google Scholar]
  6. Griffin D. E. 2001; Measles virus. In Fields Virology , 4th edn. pp  1401–1441 Edited by Knipe D. M., Howley P. M., Griffin D. E., Lamb R. A., Martin M. A., Roizman B., Straus S. E. Philadelphia: Lippincott, Williams & Wilkins;
    [Google Scholar]
  7. Hashimoto K., Ono N., Tatsuo H., Minagawa H., Takeda M., Takeuchi K., Yanagi Y. 2002; SLAM (CD150)-independent measles virus entry as revealed by recombinant virus expressing green fluorescent protein. J Virol 76:6743–6749 [CrossRef]
    [Google Scholar]
  8. Hsu E. C., Sarangi F., Iorio C. & 7 other authors 1998; A single amino acid change in the hemagglutinin protein of measles virus determines its ability to bind CD46 and reveals another receptor on marmoset B cells. J Virol 72:2905–2916
    [Google Scholar]
  9. Hsu E. C., Iorio C., Sarangi F., Khine A. A., Richardson C. D. 2001; CDw150(SLAM) is a receptor for a lymphotropic strain of measles virus and may account for the immunosuppressive properties of this virus. Virology 279:9–21 [CrossRef]
    [Google Scholar]
  10. Lecouturier V., Fayolle J., Caballero M., Carabaña J., Celma M. L., Fernandez-Muñoz R., Wild T. F., Buckland R. 1996; Identification of two amino acids in the hemagglutinin glycoprotein of measles virus (MV) that govern hemadsorption, HeLa cell fusion, and CD46 downregulation: phenotypic markers that differentiate vaccine and wild-type MV strains. J Virol 70:4200–4204
    [Google Scholar]
  11. Li L., Qi Y. 2002; A novel amino acid position in hemagglutinin glycoprotein of measles virus is responsible for hemadsorption and CD46 binding. Arch Virol 147:775–786 [CrossRef]
    [Google Scholar]
  12. Liszewski M. K., Post T. W., Atkinson J. P. 1991; Membrane cofactor protein (MCP or CD46): newest member of the regulators of complement activation gene cluster. Annu Rev Immunol 9:431–455 [CrossRef]
    [Google Scholar]
  13. Manchester M., Eto D. S., Valsamakis A., Liton P. B., Fernandez-Muñoz R., Rota P. A., Bellini W. J., Forthal D. N., Oldstone M. B. A. 2000; Clinical isolates of measles virus use CD46 as a cellular receptor. J Virol 74:3967–3974 [CrossRef]
    [Google Scholar]
  14. Massé N., Ainouze M., Neel B., Wild T. F., Buckland R., Langedijk J. P. 2004; Measles virus (MV) hemagglutinin: evidence that attachment sites for MV receptors SLAM and CD46 overlap on the globular head. J Virol 78:9051–9063 [CrossRef]
    [Google Scholar]
  15. Naniche D., Varior-Krishnan G., Cervoni F., Wild T. F., Rossi B., Rabourdin-Combe C., Gerlier D. 1993; Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J Virol 67:6025–6032
    [Google Scholar]
  16. Nichols K. E., Ma C. S., Cannons J. L., Schwartzberg P. L., Tangye S. G. 2005; Molecular and cellular pathogenesis of X-linked lymphoproliferative disease. Immunol Rev 203:180–199 [CrossRef]
    [Google Scholar]
  17. Nielsen L., Blixenkrone-Møller M., Thylstrup M., Hansen N. J., Bolt G. 2001; Adaptation of wild-type measles virus to CD46 receptor usage. Arch Virol 146:197–208 [CrossRef]
    [Google Scholar]
  18. Ono N., Tatsuo H., Hidaka Y., Aoki T., Minagawa H., Yanagi Y. 2001; Measles viruses on throat swabs from measles patients use signaling lymphocytic activation molecule (CDw150) but not CD46 as a cellular receptor. J Virol 75:4399–4401 [CrossRef]
    [Google Scholar]
  19. Parks C. L., Lerch R. A., Walpita P., Wang H. P., Sidhu M. S., Udem S. A. 2001; Comparison of predicted amino acid sequences of measles virus strains in the Edmonston vaccine lineage. J Virol 75:910–920 [CrossRef]
    [Google Scholar]
  20. Richardson C. D., Scheid A., Choppin P. W. 1980; Specific inhibition of paramyxovirus and myxovirus replication by oligopeptides with amino acid sequences similar to those at the N-termini of the F1 or HA2 viral polypeptides. Virology 105:205–222 [CrossRef]
    [Google Scholar]
  21. Rima B. K., Earle J. A. P., Baczko K. & 7 other authors 1997; Sequence divergence of measles virus haemagglutinin during natural evolution and adaptation to cell culture. J Gen Virol 78:97–106
    [Google Scholar]
  22. Schneider U., von Messling V., Devaux P., Cattaneo R. 2002; Efficiency of measles virus entry and dissemination through different receptors. J Virol 76:7460–7467 [CrossRef]
    [Google Scholar]
  23. Schnorr J. J., Dunster L. M., Nanan R., Schneider-Schaulies J., Schneider-Schaulies S., ter Meulen V. 1995; Measles virus-induced down-regulation of CD46 is associated with enhanced sensitivity to complement-mediated lysis of infected cells. Eur J Immunol 25:976–984 [CrossRef]
    [Google Scholar]
  24. Seki F., Ono N., Yamaguchi R., Yanagi Y. 2003; Efficient isolation of wild strains of canine distemper virus in Vero cells expressing canine SLAM (CD150) and their adaptability to marmoset B95a cells. J Virol 77:9943–9950 [CrossRef]
    [Google Scholar]
  25. Seya T., Hara T., Matsumoto M., Akedo H. 1990; Quantitative analysis of membrane cofactor protein (MCP) of complement. High expression of MCP on human leukemia cell lines, which is down-regulated during cell differentiation. J Immunol 145:238–245
    [Google Scholar]
  26. Shibahara K., Hotta H., Katayama Y., Homma M. 1994; Increased binding activity of measles virus to monkey red blood cells after long-term passage in Vero cell cultures. J Gen Virol 75:3511–3516 [CrossRef]
    [Google Scholar]
  27. Tahara M., Takeda M., Yanagi Y. 2005; Contributions of matrix and large protein genes of the measles virus Edmonston strain to growth in cultured cells as revealed by recombinant viruses. J Virol 79:15218–15225 [CrossRef]
    [Google Scholar]
  28. Takada A., Robinson C., Goto H., Sanchez A., Murti K. G., Whitt M. A., Kawaoka Y. 1997; A system for functional analysis of Ebola virus glycoprotein. Proc Natl Acad Sci U S A 94:14764–14769 [CrossRef]
    [Google Scholar]
  29. Takeda M., Takeuchi K., Miyajima N., Kobune F., Ami Y., Nagata N., Suzaki Y., Nagai Y., Tashiro M. 2000; Recovery of pathogenic measles virus from cloned cDNA. J Virol 74:6643–6647 [CrossRef]
    [Google Scholar]
  30. Takeda M., Ohno S., Seki F., Hashimoto K., Miyajima N., Takeuchi K., Yanagi Y. 2005; Efficient rescue of measles virus from cloned cDNA using SLAM-expressing Chinese hamster ovary cells. Virus Res 108:161–165 [CrossRef]
    [Google Scholar]
  31. Takeuchi K., Takeda M., Miyajima N., Kobune F., Tanabayashi K., Tashiro M. 2002; Recombinant wild-type and Edmonston strain measles viruses bearing heterologous H proteins: role of H protein in cell fusion and host cell specificity. J Virol 76:4891–4900 [CrossRef]
    [Google Scholar]
  32. Tatsuo H., Okuma K., Tanaka K., Ono N., Minagawa H., Takade A., Matsuura Y., Yanagi Y. 2000a; Virus entry is a major determinant of cell tropism of Edmonston and wild-type strains of measles virus as revealed by vesicular stomatitis virus pseudotypes bearing their envelope proteins. J Virol 74:4139–4145 [CrossRef]
    [Google Scholar]
  33. Tatsuo H., Ono N., Tanaka K., Yanagi Y. 2000b; SLAM (CDw150) is a cellular receptor for measles virus. Nature 406:893–897 [CrossRef]
    [Google Scholar]
  34. Tatsuo H., Ono N., Yanagi Y. 2001; Morbilliviruses use signaling lymphocyte activation molecules (CD150) as cellular receptors. J Virol 75:5842–5850 [CrossRef]
    [Google Scholar]
  35. Vallejo A. N., Pogulis R. J., Pease L. R. 1995; Mutagenesis and synthesis of novel recombinant genes using PCR. In PCR Primer: a Laboratory Manual pp  603–612 Edited by Dieffenbach C. W., Dveksler G. S. Plainview, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  36. Vongpunsawad S., Oezgun N., Braun W., Cattaneo R. 2004; Selectively receptor-blind measles viruses: identification of residues necessary for SLAM- or CD46-induced fusion and their localization on a new hemagglutinin structural model. J Virol 78:302–313 [CrossRef]
    [Google Scholar]
  37. Woelk C. H., Jin L., Holmes E. C., Brown D. W. 2001; Immune and artificial selection in the haemagglutinin (H) glycoprotein of measles virus. J Gen Virol 82:2463–2474
    [Google Scholar]
  38. Xie M.-F., Tanaka K., Ono N., Minagawa H., Yanagi Y. 1999; Amino acid substitutions at position 481 differently affect the ability of the measles virus hemagglutionin to induce cell fusion in monkey and marmoset cells co-expressing the fusion protein. Arch Virol 144:1689–1699 [CrossRef]
    [Google Scholar]
  39. Yanagi Y., Ono N., Tatsuo H., Hashimoto K., Minagawa H. 2002; Measles virus receptor SLAM (CD150). Virology 299:155–161 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81682-0
Loading
/content/journal/jgv/10.1099/vir.0.81682-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error