1887

Abstract

Monoclonal antibodies (mAbs) to conserved epitopes on the G glycoprotein of human respiratory syncytial virus (HRSV) subgroup A fail to neutralize the virus in cell culture in the absence of complement, but are protective in rodent models of infection. They may have potential as prophylactic agents in human infants. In order to investigate the role of Fc-dependent pathways in protection by one such antibody, 1C2, the V and V genes were isolated by RT-PCR and assembled with human light-chain and human 1 heavy-chain constant-region genes to form two mouse–human chimaeras, which were expressed in NS0 cells. One of the chimaeras carried a wild-type 1 chain, whilst the other had an aglycosyl mutation in the C2 domain rendering the antibody defective in complement activation and FcR binding. Whilst both chimaeric antibodies exhibited similar avidity for HRSV in ELISA, only the fully glycosylated wild type was capable of neutralizing the virus in the presence of complement. In mice passively immunized with either murine or wild-type 1 chimaeric antibody, no virus could be recovered from the lungs 4 days after intranasal inoculation of HRSV. In mice immunized with the aglycosyl 1 chimaera, however, virus was present in the lungs following challenge, although virus titres were significantly reduced compared with controls (<0·005). These results indicate that the protective effect of this antibody is mediated by both Fc-dependent and Fc-independent pathways.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81660-0
2006-05-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/5/1267.html?itemId=/content/journal/jgv/10.1099/vir.0.81660-0&mimeType=html&fmt=ahah

References

  1. Åkerlind-Stopner, B., Utter, G., Norrby, E. & Mufson, M. A. ( 1995; ). Evaluation of subgroup-specific peptides of the G protein of respiratory syncytial virus for characterization of the immune response. J Med Virol 47, 120–125.[CrossRef]
    [Google Scholar]
  2. Bastien, N., Taylor, G., Thomas, L. H., Wyld, S. G., Simard, C. & Trudel, M. ( 1997; ). Immunization with a peptide derived from the G glycoprotein of bovine respiratory syncytial virus (BRSV) reduces the incidence of BRSV-associated pneumonia in the natural host. Vaccine 15, 1385–1390.[CrossRef]
    [Google Scholar]
  3. Bolt, S., Routledge, E., Lloyd, I., Chatenoud, L., Pope, H., Gorman, S. D., Clark, M. & Waldmann, H. ( 1993; ). The generation of a humanized, non-mitogenic CD3 monoclonal antibody which retains in vitro immunosuppressive properties. Eur J Immunol 23, 403–411.[CrossRef]
    [Google Scholar]
  4. Brown, B. A., Comeau, R. D., Jones, P. L., Liberatore, F. A., Neacy, W. P., Sands, H. & Gallagher, B. M. ( 1987; ). Pharmacokinetics of the monoclonal antibody B72.3 and its fragments labeled with either 125I or 111In. Cancer Res 47, 1149–1154.
    [Google Scholar]
  5. Collins, P. L., Chanock, R. M. & Murphy, B. R. ( 2001; ). Respiratory syncytial virus. In Fields Virology, 4th edn, pp. 1443–1485. Edited by D. Knipe & P. Howley. Philadelphia, PA: Lippincott, Williams & Wilkins.
  6. Corbeil, S., Seguin, C. & Trudel, M. ( 1996; ). Involvement of the complement system in the protection of mice from challenge with respiratory syncytial virus Long strain following passive immunization with monoclonal antibody 18A2B2. Vaccine 14, 521–525.[CrossRef]
    [Google Scholar]
  7. DeVincenzo, J., Aitken, J. & Harrison, L. ( 2003; ). Respiratory syncytial virus (RSV) loads in premature infants with and without prophylactic RSV fusion protein monoclonal antibody. J Pediatr 143, 123–126.[CrossRef]
    [Google Scholar]
  8. Doreleijers, J., Langedijk, J., Hard, K., Boelens, R., Rullman, J., Schaaper, W., van Oirschot, J. & Kaptein, R. ( 1996; ). Solution structure of the immunodominant region of protein G of bovine respiratory syncytial virus. Biochemistry 35, 14684–14688.[CrossRef]
    [Google Scholar]
  9. Duncan, A. R. & Winter, G. ( 1988; ). The binding site for C1q on IgG. Nature 332, 738–740.[CrossRef]
    [Google Scholar]
  10. Feldman, S. A., Hendry, R. M. & Beeler, J. A. ( 1999; ). Identification of a linear heparin binding domain for human respiratory syncytial virus attachment glycoprotein G. J Virol 73, 6610–6617.
    [Google Scholar]
  11. Feldman, S. A., Audet, S. & Beeler, J. A. ( 2000; ). The fusion glycoprotein of human respiratory syncytial virus facilitates virus attachment and infectivity via an interaction with cellular heparan sulfate. J Virol 74, 6442–6447.[CrossRef]
    [Google Scholar]
  12. Glezen, W., Paredes, A., Allison, J., Taber, L. & Frank, A. ( 1981; ). Risk of respiratory syncytial virus infection for infants from low income families in relation to age, sex, ethnic group, and maternal antibody level. J Pediatr 98, 708–715.[CrossRef]
    [Google Scholar]
  13. Hale, G., Waldmann, H. & Dyer, M. ( 1988; ). Specificity of monoclonal antibody Campath-1. Bone Marrow Transplant 3, 237–239.
    [Google Scholar]
  14. Harlow, E. & Lane, L. ( 1988; ). Antibodies: a Laboratory Manual. New York: Cold Spring Harbor Laboratory.
  15. Hayes, P. J., Scott, R. & Wheeler, J. ( 1994; ). In vivo production of tumour necrosis factor-α and interleukin-6 in BALB/c mice inoculated intranasally with a high dose of respiratory syncytial virus. J Med Virol 42, 323–329.[CrossRef]
    [Google Scholar]
  16. Hieter, P. A., Max, E. E., Seidman, J. G., Maizel, J. V., Jr & Leder, P. ( 1980; ). Cloned human and mouse kappa immunoglobulin constant and J region genes conserve homology in functional segments. Cell 22, 197–207.[CrossRef]
    [Google Scholar]
  17. IMpact-RSV Study Group ( 1998; ). Palivizumab, a humanized respiratory syncytial virus monoclonal antibody, reduces hospitalization from respiratory syncytial virus infection in high risk infants. Pediatrics 102, 531–537.[CrossRef]
    [Google Scholar]
  18. Isaacs, J. D., Clark, M. R., Greenwood, J. & Waldmann, H. ( 1992; ). Therapy with monoclonal antibodies. An in vivo model for the assessment of therapeutic potential. J Immunol 148, 3062–3071.
    [Google Scholar]
  19. Kozak, M. ( 1987; ). At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J Mol Biol 196, 947–950.[CrossRef]
    [Google Scholar]
  20. Langedijk, J. P., Schaaper, W. M., Meloen, R. H. & van Oirshot, J. T. ( 1996; ). Proposed three-dimensional model for the attachment protein G of respiratory syncytial virus. J Gen Virol 77, 1249–1257.[CrossRef]
    [Google Scholar]
  21. Melero, J. A., García-Barreno, B., Martínez, I., Pringle, C. R. & Cane, P. A. ( 1997; ). Antigenic structure, evolution and immunobiology of human respiratory syncytial virus attachment (G) protein. J Gen Virol 78, 2411–2418.
    [Google Scholar]
  22. Morgan, L. A., Routledge, E. G., Willcocks, M. M., Samson, A. C., Scott, R. & Toms, G. L. ( 1987; ). Strain variation of respiratory syncytial virus. J Gen Virol 68, 2781–2788.[CrossRef]
    [Google Scholar]
  23. Morrison, S., Canfield, S. & Tao, M.-H. ( 1993; ). Complement activation an Fc receptor binding by IgG. In Protein Engineering of Antibody Molecules for Prophylactic and Therapeutic Application in Man, pp. 101–114. Edited by M. Clark. Nottingham, UK: Academic Titles.
  24. Ogilvie, M. M., Vathenen, A. S., Radford, M., Codd, J. & Key, S. ( 1981; ). Maternal antibody and respiratory syncytial virus infection in infancy. J Med Virol 7, 263–271.[CrossRef]
    [Google Scholar]
  25. Olmsted, R. A., Murphy, B. R., Lawrence, L. A., Elango, N., Moss, B. & Collins, P. L. ( 1989; ). Processing, surface expression, and immunogenicity of carboxy-terminally truncated mutants of G protein of human respiratory syncytial virus. J Virol 63, 411–420.
    [Google Scholar]
  26. Orlandi, R., Gussow, D. H., Jones, P. T. & Winter, G. ( 1989; ). Cloning immunoglobulin variable domains for expression by the polymerase chain reaction. Proc Natl Acad Sci U S A 86, 3833–3837.[CrossRef]
    [Google Scholar]
  27. Palomo, C., Cane, P. A. & Melero, J. A. ( 2000; ). Evaluation of the antibody specificities of human convalescent-phase sera against the attachment (G) protein of human respiratory syncytial virus: influence of strain variation and carbohydrate side chains. J Med Virol 60, 468–474.[CrossRef]
    [Google Scholar]
  28. Plotnicky-Gilquin, H., Goetsch, L., Huss, T. & 7 other authors ( 1999; ). Identification of multiple protective epitopes (protectopes) in the central conserved domain of a prototype human respiratory syncytial virus G protein. J Virol 73, 5637–5645.
    [Google Scholar]
  29. Routledge, E. G., Willcocks, M. M., Samson, A. C., Morgan, L., Scott, R., Anderson, J. J. & Toms, G. L. ( 1988; ). The purification of four respiratory syncytial virus proteins and their evaluation as protective agents against experimental infection in BALB/c mice. J Gen Virol 69, 293–303.[CrossRef]
    [Google Scholar]
  30. Routledge, E. G., Lloyd, I., Gorman, S. D., Clark, M. & Waldmann, H. ( 1991; ). A humanized monovalent CD3 antibody which can activate homologous complement. Eur J Immunol 21, 2717–2725.[CrossRef]
    [Google Scholar]
  31. Samson, A. C., Willcocks, M. M., Routledge, E. G., Morgan, L. A. & Toms, G. L. ( 1986; ). A neutralizing monoclonal antibody to respiratory syncytial virus which binds to both F1 and F2 components of the fusion protein. J Gen Virol 67, 1479–1483.[CrossRef]
    [Google Scholar]
  32. Simard, C., Nadon, F., Séguin, C., Thien, N. N., Binz, H., Basso, J., Laliberté, J. F. & Trudel, M. ( 1997; ). Subgroup specific protection of mice from respiratory syncytial virus infection with peptides encompassing the amino acid region 174-187 from the G glycoprotein: the role of cysteinyl residues in protection. Vaccine 15, 423–432.[CrossRef]
    [Google Scholar]
  33. Stott, E. J., Ball, L. A., Young, K. K., Furze, J. & Wertz, G. W. ( 1986; ). Human respiratory syncytial virus glycoprotein G expressed from a recombinant vaccinia virus vector protects mice against live-virus challenge. J Virol 60, 607–613.
    [Google Scholar]
  34. Takahashi, N., Ueda, S., Obata, M., Nikaido, T., Nakai, S. & Honjo, T. ( 1982; ). Structure of human immunoglobulin gamma genes: implications for evolution of a gene family. Cell 29, 671–679.[CrossRef]
    [Google Scholar]
  35. Tao, M.-H. & Morrison, S. ( 1989; ). Studies of aglycosylated chimaeric mouse-human IgG. Role of carbohydrate in the structure and effector functions mediated by the human IgG constant region. J Immunol 143, 2595–2601.
    [Google Scholar]
  36. Taylor, G. ( 1994; ). The role of antibody in controlling and/or clearing virus infections. In Strategies in Vaccine Design, pp. 17–34. Edited by G. L. Ada. Texas: R. G. Landes.
  37. Taylor, G., Stott, E. J., Bew, M., Fernie, B. F., Cote, P. J., Collins, A. P., Hughes, M. & Jebbett, J. J. ( 1984; ). Monoclonal antibodies protect against respiratory syncytial virus infection in mice. Immunology 52, 137–142.
    [Google Scholar]
  38. Teng, M. N., Whitehead, S. S. & Collins, P. L. ( 2001; ). Contribution of the respiratory syncytial virus G glycoprotein and its secreted and membrane-bound forms to virus replication in vitro and in vivo. Virology 289, 283–296.[CrossRef]
    [Google Scholar]
  39. Tripp, R. A., Jones, L. P., Haynes, L. M., Zheng, H., Murphy, P. M. & Anderson, L. J. ( 2001; ). CX3C chemokine mimicry by respiratory syncytial virus G glycoprotein. Nat Immunol 2, 732–738.[CrossRef]
    [Google Scholar]
  40. Trudel, M., Nadon, F., Seguin, C. & Binz, H. ( 1991; ). Protection of BALB/c mice from respiratory syncytial virus infection by immunization with a synthetic peptide derived from the G glycoprotein. Virology 185, 749–757.[CrossRef]
    [Google Scholar]
  41. Walsh, E. E., Schlesinger, J. J. & Brandriss, M. W. ( 1984; ). Protection from respiratory syncytial virus infection in cotton rats by passive transfer of monoclonal antibodies. Infect Immun 43, 756–758.
    [Google Scholar]
  42. Ward, K. A., Lambden, P. R., Ogilvie, M. M. & Watt, P. J. ( 1983; ). Antibodies to respiratory syncytial virus polypeptides and their significance in human virus infection. J Gen Virol 64, 1867–1876.[CrossRef]
    [Google Scholar]
  43. West, W. H., Lounsbach, G. R., Bourgeois, C., Robinson, J. W., Carter, M. J., Crompton, S., Duhindan, N., Yazici, Z. A. & Toms, G. L. ( 1994; ). Biological activity, binding site and affinity of monoclonal antibodies to the fusion protein of respiratory syncytial virus. J Gen Virol 75, 2813–2819.[CrossRef]
    [Google Scholar]
  44. Woelk, C. H. & Holmes, E. C. ( 2001; ). Variable immune-driven natural selection in the attachment (G) glycoprotein of respiratory syncytial virus (RSV). J Mol Evol 52, 182–192.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81660-0
Loading
/content/journal/jgv/10.1099/vir.0.81660-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error