1887

Abstract

Several cellular molecules have been identified as putative receptors for (HCV): CD81 tetraspanin, scavenger receptor class B type I (SR-BI), mannose-binding lectins DC-SIGN and L-SIGN, low-density lipoprotein receptor, heparan sulphate proteoglycans and the asialoglycoprotein receptor. Due to difficulties in propagating HCV in cell culture, most of these molecules have been identified by analysing their interaction with a soluble, truncated form of HCV glycoprotein E2. A recent major step in investigating HCV entry was the development of pseudoparticles (HCVpp), consisting of unmodified HCV envelope glycoproteins assembled onto retroviral core particles. This system has allowed the investigation of the role of candidate receptors in the early steps of the HCV life cycle and the data obtained can now be confirmed with the help of a newly developed cell-culture system that allows efficient amplification of HCV (HCVcc). Interestingly, CD81 and SR-BI have been shown to play direct roles in HCVpp and/or HCVcc entry. However, co-expression of CD81 and SR-BI in non-hepatic cell lines does not lead to HCVpp entry, indicating that other molecule(s), expressed only in hepatic cells, are necessary for HCV entry. In this review, the molecules that have been proposed as potential HCV receptors are described and the experimental data indicating that CD81 and SR-BI are potentially involved in HCV entry are presented.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81646-0
2006-05-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/5/1075.html?itemId=/content/journal/jgv/10.1099/vir.0.81646-0&mimeType=html&fmt=ahah

References

  1. Acton, S. L., Scherer, P. E., Lodish, H. F. & Krieger, M. ( 1994; ). Expression cloning of SR-BI, a CD36-related class B scavenger receptor. J Biol Chem 269, 21003–21009.
    [Google Scholar]
  2. Acton, S., Rigotti, A., Landschulz, K. T., Xu, S., Hobbs, H. H. & Krieger, M. ( 1996; ). Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science 271, 518–520.[CrossRef]
    [Google Scholar]
  3. Agnello, V., Ábel, G., Elfahal, M., Knight, G. B. & Zhang, Q.-X. ( 1999; ). Hepatitis C virus and other Flaviviridae viruses enter cells via low density lipoprotein receptor. Proc Natl Acad Sci U S A 96, 12766–12771.[CrossRef]
    [Google Scholar]
  4. André, P., Komurian-Pradel, F., Deforges, S. & 7 other authors ( 2002; ). Characterization of low- and very-low-density hepatitis C virus RNA-containing particles. J Virol 76, 6919–6928.[CrossRef]
    [Google Scholar]
  5. Babitt, J., Trigatti, B., Rigotti, A., Smart, E. J., Anderson, R. G. W., Xu, S. & Krieger, M. ( 1997; ). Murine SR-BI, a high density lipoprotein receptor that mediates selective lipid uptake, is N-glycosylated and fatty acylated and colocalizes with plasma membrane caveolae. J Biol Chem 272, 13242–13249.[CrossRef]
    [Google Scholar]
  6. Barth, H., Schäfer, C., Adah, M. I. & 10 other authors ( 2003; ). Cellular binding of hepatitis C virus envelope glycoprotein E2 requires cell surface heparan sulfate. J Biol Chem 278, 41003–41012.[CrossRef]
    [Google Scholar]
  7. Barth, H., Cerino, R., Arcuri, M. & 12 other authors ( 2005; ). Scavenger receptor class B type I and hepatitis C virus infection of primary Tupaia hepatocytes. J Virol 79, 5774–5785.[CrossRef]
    [Google Scholar]
  8. Bartosch, B., Dubuisson, J. & Cosset, F.-L. ( 2003a; ). Infectious hepatitis C virus pseudo-particles containing functional E1–E2 envelope protein complexes. J Exp Med 197, 633–642.[CrossRef]
    [Google Scholar]
  9. Bartosch, B., Vitelli, A., Granier, C. & 7 other authors ( 2003b; ). Cell entry of hepatitis C virus requires a set of co-receptors that include the CD81 tetraspanin and the SR-B1 scavenger receptor. J Biol Chem 278, 41624–41630.[CrossRef]
    [Google Scholar]
  10. Bartosch, B., Verney, G., Dreux, M., Donot, P., Morice, Y., Penin, F., Pawlotsky, J.-M., Lavillette, D. & Cosset, F.-L. ( 2005; ). An interplay between hypervariable region 1 of the hepatitis C virus E2 glycoprotein, the scavenger receptor BI, and high-density lipoprotein promotes both enhancement of infection and protection against neutralizing antibodies. J Virol 79, 8217–8229.[CrossRef]
    [Google Scholar]
  11. Bashirova, A. A., Geijtenbeek, T. B. H., van Duijnhoven, G. C. F. & 10 other authors ( 2001; ). A dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN)-related protein is highly expressed on human liver sinusoidal endothelial cells and promotes HIV-1 infection. J Exp Med 193, 671–678.[CrossRef]
    [Google Scholar]
  12. Baumert, T. F., Ito, S., Wong, D. T. & Liang, T. J. ( 1998; ). Hepatitis C virus structural proteins assemble into viruslike particles in insect cells. J Virol 72, 3827–3836.
    [Google Scholar]
  13. Boucheix, C. & Rubinstein, E. ( 2001; ). Tetraspanins. Cell Mol Life Sci 58, 1189–1205.[CrossRef]
    [Google Scholar]
  14. Brazzoli, M., Helenius, A., Foung, S. K. H., Houghton, M., Abrignani, S. & Merola, M. ( 2005; ). Folding and dimerization of hepatitis C virus E1 and E2 glycoproteins in stably transfected CHO cells. Virology 332, 438–453.[CrossRef]
    [Google Scholar]
  15. Callens, N., Ciczora, Y., Bartosch, B., Vu-Dac, N., Cosset, F.-L., Pawlotsky, J.-M., Penin, F. & Dubuisson, J. ( 2005; ). Basic residues in hypervariable region 1 of hepatitis C virus envelope glycoprotein E2 contribute to virus entry. J Virol 79, 15331–15341.[CrossRef]
    [Google Scholar]
  16. Calvo, D. & Vega, M. A. ( 1993; ). Identification, primary structure, and distribution of CLA-1, a novel member of the CD36/LIMPII gene family. J Biol Chem 268, 18929–18935.
    [Google Scholar]
  17. Cao, G., Garcia, C. K., Wyne, K. L., Schultz, R. A., Parker, K. L. & Hobbs, H. H. ( 1997; ). Structure and localization of the human gene encoding SR-BI/CLA-1: evidence for transcriptional control by steroidogenic factor 1. J Biol Chem 272, 33068–33076.[CrossRef]
    [Google Scholar]
  18. Cocquerel, L., Kuo, C.-C., Dubuisson, J. & Levy, S. ( 2003; ). CD81-dependent binding of hepatitis C virus E1E2 heterodimers. J Virol 77, 10677–10683.[CrossRef]
    [Google Scholar]
  19. Cormier, E. G., Tsamis, F., Kajumo, F., Durso, R. J., Gardner, J. P. & Dragic, T. ( 2004a; ). CD81 is an entry coreceptor for hepatitis C virus. Proc Natl Acad Sci U S A 101, 7270–7274.[CrossRef]
    [Google Scholar]
  20. Cormier, E. G., Durso, R. J., Tsamis, F., Boussemart, L., Manix, C., Olson, W. C., Gardner, J. P. & Dragic, T. ( 2004b; ). L-SIGN (CD209L) and DC-SIGN (CD209) mediate transinfection of liver cells by hepatitis C virus. Proc Natl Acad Sci U S A 101, 14067–14072.[CrossRef]
    [Google Scholar]
  21. Drummer, H. E., Wilson, K. A. & Poumbourios, P. ( 2002; ). Identification of the hepatitis C virus E2 glycoprotein binding site on the large extracellular loop of CD81. J Virol 76, 11143–11147.[CrossRef]
    [Google Scholar]
  22. Drummer, H. E., Maerz, A. & Poumbourios, P. ( 2003; ). Cell surface expression of functional hepatitis C virus E1 and E2 glycoproteins. FEBS Lett 546, 385–390.[CrossRef]
    [Google Scholar]
  23. Drummer, H. E., Wilson, K. A. & Poumbourios, P. ( 2005; ). Determinants of CD81 dimerization and interaction with hepatitis C virus glycoprotein E2. Biochem Biophys Res Commun 328, 251–257.[CrossRef]
    [Google Scholar]
  24. Engering, A., Geijtenbeek, T. B. H., van Vliet, S. J. & 8 other authors (2002; ). The dendritic cell-specific adhesion receptor DC-SIGN internalizes antigen for presentation to T cells. J Immunol 168, 2118–2126.[CrossRef]
    [Google Scholar]
  25. Flint, M., Maidens, C., Loomis-Price, L. D., Shotton, C., Dubuisson, J., Monk, P., Higginbottom, A., Levy, S. & McKeating, J. A. ( 1999; ). Characterization of hepatitis C virus E2 glycoprotein interaction with a putative cellular receptor, CD81. J Virol 73, 6235–6244.
    [Google Scholar]
  26. Forns, X., Allander, T., Rohwer-Nutter, P. & Bukh, J. ( 2000; ). Characterization of modified hepatitis C virus E2 proteins expressed on the cell surface. Virology 274, 75–85.[CrossRef]
    [Google Scholar]
  27. Gardner, J. P., Durso, R. J., Arrigale, R. R., Donovan, G. P., Maddon, P. J., Dragic, T. & Olson, W. C. ( 2003; ). L-SIGN (CD 209L) is a liver-specific capture receptor for hepatitis C virus. Proc Natl Acad Sci U S A 100, 4498–4503.[CrossRef]
    [Google Scholar]
  28. Gu, X., Trigatti, B., Xu, S., Acton, S., Babitt, J. & Krieger, M. ( 1998; ). The efficient cellular uptake of high density lipoprotein lipids via scavenger receptor class B type I requires not only receptor-mediated surface binding but also receptor-specific lipid transfer mediated by its extracellular domain. J Biol Chem 273, 26338–26348.[CrossRef]
    [Google Scholar]
  29. Higginbottom, A., Quinn, E. R., Kuo, C.-C. & 7 other authors ( 2000; ). Identification of amino acid residues in CD81 critical for interaction with hepatitis C virus envelope glycoprotein E2. J Virol 74, 3642–3649.[CrossRef]
    [Google Scholar]
  30. Higginbottom, A., Takahashi, Y., Bolling, L., Coonrod, S. A., White, J. M., Partridge, L. J. & Monk, P. N. ( 2003; ). Structural requirements for the inhibitory action of the CD9 large extracellular domain in sperm/oocyte binding and fusion. Biochem Biophys Res Commun 311, 208–214.[CrossRef]
    [Google Scholar]
  31. Hsu, M., Zhang, J., Flint, M., Logvinoff, C., Cheng-Mayer, C., Rice, C. M. & McKeating, J. A. ( 2003; ). Hepatitis C virus glycoproteins mediate pH-dependent cell entry of pseudotyped retroviral particles. Proc Natl Acad Sci U S A 100, 7271–7276.[CrossRef]
    [Google Scholar]
  32. Huang, Z. H., Gu, D., Lange, Y. & Mazzone, T. ( 2003; ). Expression of scavenger receptor BI facilitates sterol movement between the plasma membrane and the endoplasmic reticulum in macrophages. Biochemistry 42, 3949–3955.[CrossRef]
    [Google Scholar]
  33. Imai, T. & Yoshie, O. ( 1993; ). C33 antigen and M38 antigen recognized by monoclonal antibodies inhibitory to syncytium formation by human T cell leukemia virus type 1 are both members of the transmembrane 4 superfamily and associate with each other and with CD4 or CD8 in T cells. J Immunol 151, 6470–6481.
    [Google Scholar]
  34. Kaji, K., Oda, S., Miyazaki, S. & Kudo, A. ( 2002; ). Infertility of CD9-deficient mouse eggs is reversed by mouse CD9, human CD9, or mouse CD81; polyadenylated mRNA injection developed for molecular analysis of sperm–egg fusion. Dev Biol 247, 327–334.[CrossRef]
    [Google Scholar]
  35. Kazarov, A. R., Yang, X., Stipp, C. S., Sehgal, B. & Hemler, M. E. ( 2002; ). An extracellular site on tetraspanin CD151 determines α3 and α6 integrin-dependent cellular morphology. J Cell Biol 158, 1299–1309.[CrossRef]
    [Google Scholar]
  36. Kellner-Weibel, G., de La Llera-Moya, M., Connelly, M. A., Stoudt, G., Christian, A. E., Haynes, M. P., Williams, D. L. & Rothblat, G. H. ( 2000; ). Expression of scavenger receptor BI in COS-7 cells alters cholesterol content and distribution. Biochemistry 39, 221–229.[CrossRef]
    [Google Scholar]
  37. Kitadokoro, K., Bordo, D., Galli, G., Petracca, R., Falugi, F., Abrignani, S., Grandi, G. & Bolognesi, M. ( 2001; ). CD81 extracellular domain 3D structure: insight into the tetraspanin superfamily structural motifs. EMBO J 20, 12–18.[CrossRef]
    [Google Scholar]
  38. Koppel, E. A., van Gisbergen, K. P. J. M., Geijtenbeek, T. B. H. & van Kooyk, Y. ( 2005; ). Distinct functions of DC-SIGN and its homologues L-SIGN (DC-SIGNR) and mSIGNR1 in pathogen recognition and immune regulation. Cell Microbiol 7, 157–165.
    [Google Scholar]
  39. Krieger, M. & Kozarsky, K. ( 1999; ). Influence of the HDL receptor SR-BI on atherosclerosis. Curr Opin Lipidol 10, 491–497.[CrossRef]
    [Google Scholar]
  40. Kuhmann, S. E., Platt, E. J., Kozak, S. L. & Kabat, D. ( 2000; ). Cooperation of multiple CCR5 coreceptors is required for infections by human immunodeficiency virus type 1. J Virol 74, 7005–7015.[CrossRef]
    [Google Scholar]
  41. Landschulz, K. T., Pathak, R. K., Rigotti, A., Krieger, M. & Hobbs, H. H. ( 1996; ). Regulation of scavenger receptor, class B, type I, a high density lipoprotein receptor, in liver and steroidogenic tissues of the rat. J Clin Invest 98, 984–995.[CrossRef]
    [Google Scholar]
  42. Lavillette, D., Tarr, A. W., Voisset, C. & 7 other authors ( 2005; ). Characterization of host-range and cell entry properties of the major genotypes and subtypes of hepatitis C virus. Hepatology 41, 265–274.[CrossRef]
    [Google Scholar]
  43. Levy, S. & Shoham, T. ( 2005; ). Protein-protein interactions in the tetraspanin web. Physiology (Bethesda) 20, 218–224.[CrossRef]
    [Google Scholar]
  44. Lindenbach, B. D. & Rice, C. M. ( 2001; ). Flaviviridae: the viruses and their replication. In Fields Virology, 4th edn, pp. 991–1041. Edited by D. M. Knipe, P. M. Howley, D. E. Griffin, R. A. Lamb, M. A. Martin, B. Roizman & S. E. Straus. Philadelphia, PA: Lippincott Williams & Wilkins.
  45. Lindenbach, B. D., Evans, M. J., Syder, A. J. & 8 other authors ( 2005; ). Complete replication of hepatitis C virus in cell culture. Science 309, 623–626.[CrossRef]
    [Google Scholar]
  46. Lozach, P.-Y., Lortat-Jacob, H., de Lacroix de Lavalette, A. & 9 other authors ( 2003; ). DC-SIGN and L-SIGN are high affinity binding receptors for hepatitis C virus glycoprotein E2. J Biol Chem 278, 20358–20366.[CrossRef]
    [Google Scholar]
  47. Lozach, P.-Y., Amara, A., Bartosch, B., Virelizier, J.-L., Arenzana-Seisdedos, F., Cosset, F.-L. & Altmeyer, R. ( 2004; ). C-type lectins L-SIGN and DC-SIGN capture and transmit infectious hepatitis C virus pseudotype particles. J Biol Chem 279, 32035–32045.[CrossRef]
    [Google Scholar]
  48. McKeating, J. A., Zhang, L. Q., Logvinoff, C. & 8 other authors ( 2004; ). Diverse hepatitis C virus glycoproteins mediate viral infection in a CD81-dependent manner. J Virol 78, 8496–8505.[CrossRef]
    [Google Scholar]
  49. Meunier, J.-C., Engle, R. E., Faulk, K. & 7 other authors ( 2005; ). Evidence for cross-genotype neutralization of hepatitis C virus pseudo-particles and enhancement of infectivity by apolipoprotein C1. Proc Natl Acad Sci U S A 102, 4560–4565.[CrossRef]
    [Google Scholar]
  50. Monazahian, M., Böhme, I., Bonk, S., Koch, A., Scholz, C., Grethe, S. & Thomssen, R. ( 1999; ). Low density lipoprotein receptor as a candidate receptor for hepatitis C virus. J Med Virol 57, 223–229.[CrossRef]
    [Google Scholar]
  51. Op De Beeck, A. & Dubuisson, J. ( 2003; ). Another putative receptor for hepatitis C virus. Hepatology 37, 705–707.[CrossRef]
    [Google Scholar]
  52. Op De Beeck, A., Cocquerel, L. & Dubuisson, J. ( 2001; ). Biogenesis of hepatitis C virus envelope glycoproteins. J Gen Virol 82, 2589–2595.
    [Google Scholar]
  53. Op De Beeck, A., Voisset, C., Bartosch, B., Ciczora, Y., Cocquerel, L., Keck, Z., Foung, S., Cosset, F.-L. & Dubuisson, J. ( 2004; ). Characterization of functional hepatitis C virus envelope glycoproteins. J Virol 78, 2994–3002.[CrossRef]
    [Google Scholar]
  54. Owsianka, A., Clayton, R. F., Loomis-Price, L. D., McKeating, J. A. & Patel, A. H. ( 2001; ). Functional analysis of hepatitis C virus E2 glycoproteins and virus-like particles reveals structural dissimilarities between different forms of E2. J Gen Virol 82, 1877–1883.
    [Google Scholar]
  55. Patel, A. H., Wood, J., Penin, F., Dubuisson, J. & McKeating, J. A. ( 2000; ). Construction and characterization of chimeric hepatitis C virus E2 glycoproteins: analysis of regions critical for glycoprotein aggregation and CD81 binding. J Gen Virol 81, 2873–2883.
    [Google Scholar]
  56. Patel, A. H., Owsianka, A., Timms, J., Tarr, A. W. & Ball, J. K. ( 2005; ). Determining the effect of mutations within CD81 binding domains: identification of E2 residues critical for CD81 interaction. In Abstracts of the 12th International Symposium on Hepatitis C Virus and Related Viruses. 2–6 October 2005, Montréal, Canada.
  57. Peng, Y., Akmentin, W., Connelly, M. A., Lund-Katz, S., Phillips, M. C. & Williams, D. L. ( 2004; ). Scavenger receptor BI (SR-BI) clustered on microvillar extensions suggests that this plasma membrane domain is a way station for cholesterol trafficking between cells and high-density lipoprotein. Mol Biol Cell 15, 384–396.
    [Google Scholar]
  58. Petracca, R., Falugi, F., Galli, G. & 9 other authors ( 2000; ). Structure-function analysis of hepatitis C virus envelope-CD81 binding. J Virol 74, 4824–4830.[CrossRef]
    [Google Scholar]
  59. Philips, J. A., Rubin, E. J. & Perrimon, N. ( 2005; ). Drosophila RNAi screen reveals CD36 family member required for mycobacterial infection. Science 309, 1251–1253.[CrossRef]
    [Google Scholar]
  60. Pileri, P., Uematsu, Y., Campagnoli, S. & 8 other authors ( 1998; ). Binding of hepatitis C virus to CD81. Science 282, 938–941.[CrossRef]
    [Google Scholar]
  61. Pöhlmann, S., Zhang, J., Baribaud, F. & 7 other authors ( 2003; ). Hepatitis C virus glycoproteins interact with DC-SIGN and DC-SIGNR. J Virol 77, 4070–4080.[CrossRef]
    [Google Scholar]
  62. Reaven, E., Nomoto, A., Leers-Sucheta, S., Temel, R., Williams, D. L. & Azhar, S. ( 1998; ). Expression and microvillar localization of scavenger receptor, class B, type I (a high density lipoprotein receptor) in luteinized and hormone-desensitized rat ovarian models. Endocrinology 139, 2847–2856.
    [Google Scholar]
  63. Reaven, E., Zhan, L., Nomoto, A., Leers-Sucheta, S. & Azhar, S. ( 2000; ). Expression and microvillar localization of scavenger receptor class B, type I (SR-BI) and selective cholesteryl ester uptake in Leydig cells from rat testis. J Lipid Res 41, 343–356.
    [Google Scholar]
  64. Reaven, E., Leers-Sucheta, S., Nomoto, A. & Azhar, S. ( 2001; ). Expression of scavenger receptor class B type 1 (SR-BI) promotes microvillar channel formation and selective cholesteryl ester transport in a heterologous reconstituted system. Proc Natl Acad Sci U S A 98, 1613–1618.[CrossRef]
    [Google Scholar]
  65. Rhainds, D. & Brissette, L. ( 2004; ). The role of scavenger receptor class B type I (SR-BI) in lipid trafficking: defining the rules for lipid traders. Int J Biochem Cell Biol 36, 39–77.[CrossRef]
    [Google Scholar]
  66. Rigotti, A., Edelman, E. R., Seifert, P., Iqbal, S. N., DeMattos, R. B., Temel, R. E., Krieger, M. & Williams, D. L. ( 1996; ). Regulation by adrenocorticotropic hormone of the in vivo expression of scavenger receptor class B type I (SR-BI), a high density lipoprotein receptor, in steroidogenic cells of the murine adrenal gland. J Biol Chem 271, 33545–33549.[CrossRef]
    [Google Scholar]
  67. Rigotti, A., Trigatti, B., Babitt, J., Penman, M., Xu, S. & Krieger, M. ( 1997; ). Scavenger receptor BI – a cell surface receptor for high density lipoprotein. Curr Opin Lipidol 8, 181–188.[CrossRef]
    [Google Scholar]
  68. Roccasecca, R., Ansuini, H., Vitelli, A. & 11 other authors ( 2003; ). Binding of the hepatitis C virus E2 glycoprotein to CD81 is strain specific and is modulated by a complex interplay between hypervariable regions 1 and 2. J Virol 77, 1856–1867.[CrossRef]
    [Google Scholar]
  69. Rosa, D., Campagnoli, S., Moretto, C. & 11 other authors ( 1996; ). A quantitative test to estimate neutralizing antibodies to the hepatitis C virus: cytofluorimetric assessment of envelope glycoprotein 2 binding to target cells. Proc Natl Acad Sci U S A 93, 1759–1763.[CrossRef]
    [Google Scholar]
  70. Rubinstein, E., Ziyyat, A., Prenant, M., Wrobel, E., Wolf, J.-P., Levy, S., Le Naour, F. & Boucheix, C. ( 2006; ). Reduced fertility of female mice lacking CD81. Dev Biol 290, 351–358.[CrossRef]
    [Google Scholar]
  71. Saunier, B., Triyatni, M., Ulianich, L., Maruvada, P., Yen, P. & Kohn, L. D. ( 2003; ). Role of the asialoglycoprotein receptor in binding and entry of hepatitis C virus structural proteins in cultured human hepatocytes. J Virol 77, 546–559.[CrossRef]
    [Google Scholar]
  72. Scarselli, E., Ansuini, H., Cerino, R. & 7 other authors ( 2002; ). The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. EMBO J 21, 5017–5025.[CrossRef]
    [Google Scholar]
  73. Seigneuret, M. ( 2006; ). Complete predicted three-dimensional structure of the facilitator transmembrane protein and hepatitis C virus receptor CD81: conserved and variable structural domains in the tetraspanin superfamily. Biophys J 90, 212–227.[CrossRef]
    [Google Scholar]
  74. Seigneuret, M., Delaguillaumie, A., Lagaudrière-Gesbert, C. & Conjeaud, H. ( 2001; ). Structure of the tetraspanin main extracellular domain: a partially conserved fold with a structurally variable domain insertion. J Biol Chem 276, 40055–40064.[CrossRef]
    [Google Scholar]
  75. Shaw, M. L., McLauchlan, J., Mills, P. R., Patel, A. H. & McCruden, E. A. B. ( 2003; ). Characterisation of the differences between hepatitis C virus genotype 3 and 1 glycoproteins. J Med Virol 70, 361–372.[CrossRef]
    [Google Scholar]
  76. Silvie, O., Rubinstein, E., Franetich, J.-F. & 8 other authors ( 2003; ). Hepatocyte CD81 is required for Plasmodium falciparum and Plasmodium yoelii sporozoite infectivity. Nat Med 9, 93–96.
    [Google Scholar]
  77. Silvie, O., Franetich, J.-F., Renia, L. & Mazier, D. ( 2004; ). Malaria sporozoite: migrating for a living. Trends Mol Med 10, 97–100.[CrossRef]
    [Google Scholar]
  78. Stockert, R. J. ( 1995; ). The asialoglycoprotein receptor: relationships between structure, function, and expression. Physiol Rev 75, 591–609.
    [Google Scholar]
  79. Tailor, C. S., Nouri, A. & Kabat, D. ( 2000; ). Cellular and species resistance to murine amphotropic, gibbon ape, and feline subgroup C leukemia viruses is strongly influenced by receptor expression levels and by receptor masking mechanisms. J Virol 74, 9797–9801.[CrossRef]
    [Google Scholar]
  80. Tailor, C. S., Lavillette, D., Marin, M. & Kabat, D. ( 2003; ). Cell surface receptors for gammaretroviruses. Curr Top Microbiol Immunol 281, 29–106.
    [Google Scholar]
  81. Takeda, Y., Tachibana, I., Miyado, K. & 14 other authors ( 2003; ). Tetraspanins CD9 and CD81 function to prevent the fusion of mononuclear phagocytes. J Cell Biol 161, 945–956.[CrossRef]
    [Google Scholar]
  82. Thomssen, R., Bonk, S., Propfe, C., Heermann, K. H., Kochel, H. G. & Uy, A. ( 1992; ). Association of hepatitis C virus in human sera with beta-lipoprotein. Med Microbiol Immunol (Berl) 181, 293–300.[CrossRef]
    [Google Scholar]
  83. Trigatti, B. L., Rigotti, A. & Braun, A. ( 2000; ). Cellular and physiological roles of SR-BI, a lipoprotein receptor which mediates selective lipid uptake. Biochim Biophys Acta 1529, 276–286.[CrossRef]
    [Google Scholar]
  84. van Kooyk, Y. & Geijtenbeek, T. B. H. ( 2003; ). DC-SIGN: escape mechanism for pathogens. Nat Rev Immunol 3, 697–709.[CrossRef]
    [Google Scholar]
  85. Villanueva, R. A., Rouillé, Y. & Dubuisson, J. ( 2005; ). Interactions between virus proteins and host cell membranes during the viral life cycle. Int Rev Cytol 245, 171–244.
    [Google Scholar]
  86. Viñals, M., Xu, S., Vasile, E. & Krieger, M. ( 2003; ). Identification of the N-linked glycosylation sites on the high density lipoprotein (HDL) receptor SR-BI and assessment of their effects on HDL binding and selective lipid uptake. J Biol Chem 278, 5325–5332.[CrossRef]
    [Google Scholar]
  87. Voisset, C., Callens, N., Blanchard, E., Op De Beeck, A., Dubuisson, J. & Vu-Dac, N. ( 2005; ). High density lipoproteins facilitate hepatitis C virus entry through the scavenger receptor class B type I. J Biol Chem 280, 7793–7799.[CrossRef]
    [Google Scholar]
  88. Wakita, T., Pietschmann, T., Kato, T. & 9 other authors ( 2005; ). Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med 11, 791–796.[CrossRef]
    [Google Scholar]
  89. Williams, D. L., Wong, J. S. & Hamilton, R. L. ( 2002; ). SR-BI is required for microvillar channel formation and the localization of HDL particles to the surface of adrenocortical cells in vivo. J Lipid Res 43, 544–549.
    [Google Scholar]
  90. Wünschmann, S., Medh, J. D., Klinzmann, D., Schmidt, W. N. & Stapleton, J. T. ( 2000; ). Characterization of hepatitis C virus (HCV) and HCV E2 interactions with CD81 and the low-density lipoprotein receptor. J Virol 74, 10055–10062.[CrossRef]
    [Google Scholar]
  91. Yagnik, A. T., Lahm, A., Meola, A., Roccasecca, R. M., Ercole, B. B., Nicosia, A. & Tramontano, A. ( 2000; ). A model for the hepatitis C virus envelope glycoprotein E2. Proteins 40, 355–366.[CrossRef]
    [Google Scholar]
  92. Yamada, E., Montoya, M., Schuettler, C. G. & 7 other authors ( 2005; ). Analysis of the binding of hepatitis C virus genotype 1a and 1b E2 glycoproteins to peripheral blood mononuclear cell subsets. J Gen Virol 86, 2507–2512.[CrossRef]
    [Google Scholar]
  93. Zhang, J., Randall, G., Higginbottom, A., Monk, P., Rice, C. M. & McKeating, J. A. ( 2004; ). CD81 is required for hepatitis C virus glycoprotein-mediated viral infection. J Virol 78, 1448–1455.[CrossRef]
    [Google Scholar]
  94. Zhong, J., Gastaminza, P., Cheng, G. & 7 other authors ( 2005; ). Robust hepatitis C virus infection in vitro. Proc Natl Acad Sci U S A 102, 9294–9299.[CrossRef]
    [Google Scholar]
  95. Zhu, G.-Z., Miller, B. J., Boucheix, C., Rubinstein, E., Liu, C. C., Hynes, R. O., Myles, D. G. & Primakoff, P. ( 2002; ). Residues SFQ (173-175) in the large extracellular loop of CD9 are required for gamete fusion. Development 129, 1995–2002.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81646-0
Loading
/content/journal/jgv/10.1099/vir.0.81646-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error