1887

Abstract

Simian varicella virus (SVV) is a neurotropic alphaherpesvirus that causes a natural, varicella-like disease in non-human primates. After resolution of the primary disease, SVV, like its human counterpart, varicella-zoster virus (VZV), establishes latent infection in the neural ganglia of the host. In this study, gene expression of SVV open reading frames (ORFs) 28 and 29, which encode the viral DNA polymerase and DNA-binding protein, respectively, was characterized during lytic infection of Vero cells. The results indicate that the intergenic region controlling gene 28 and 29 expression includes overlapping, divergent promoters. The ORF 28 and 29 promoters are active in SVV-infected Vero cells, but not in uninfected cells. The SVV immediate-early gene 62 (IE62) product transactivates ORF 28 and 29 expression, and a cellular upstream stimulatory factor-binding site is important for efficient IE62 induction of genes 28 and 29. DNA sequence analysis of the 185 bp intergenic region identified putative cellular transcription factor-binding sites. Transcriptional analysis mapped ORF 28 and 29 RNA start sites. A recombinant SVV was employed to demonstrate that the ORF 29 promoter can express a heterologous gene (green fluorescent protein) when inserted into a novel site (the ORF 12/13 intergenic region) within the SVV genome. The findings demonstrate similarities between SVV and VZV ORF 28/29 expression and indicate that the simian varicella model may be useful to investigate the differential regulation of viral genes during lytic and latent infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81645-0
2006-06-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/6/1501.html?itemId=/content/journal/jgv/10.1099/vir.0.81645-0&mimeType=html&fmt=ahah

References

  1. Allen, W. P., Felsenfeld, A. D., Wolf, R. H. & Smetana, H. F. ( 1974; ). Recent studies on the isolation and characterization of delta herpesvirus. Lab Anim Sci 24, 222–228.
    [Google Scholar]
  2. Cohen, J. I. & Straus, S. E. ( 2001; ). Varicella-zoster virus and its replication. In Fields Virology, 4th edn, pp. 2707–2730. Edited by D. M. Knipe & P. M. Howley. Philadelphia, PA: Lippincott Willams & Wilkins.
  3. Cohrs, R. J., Barbour, M. & Gilden, D. H. ( 1996; ). Varicella-zoster virus (VZV) transcription during latency in human ganglia: detection of transcripts mapping to genes 21, 29, 62, and 63 in a cDNA library enriched for VZV RNA. J Virol 70, 2789–2796.
    [Google Scholar]
  4. Cohrs, R. J., Randall, J., Smith, J., Gilden, D. H., Dabrowski, C., van der Keyl, H. & Tal-Singer, R. ( 2000; ). Analysis of individual human trigeminal ganglia for latent herpes simplex virus type 1 and varicella-zoster virus nucleic acids using real-time PCR. J Virol 74, 11464–11471.[CrossRef]
    [Google Scholar]
  5. Fletcher, T. M., III & Gray, W. L. ( 1992; ). Simian varicella virus: characterization of virion and infected cell polypeptides and the antigenic cross-reactivity with varicella-zoster virus. J Gen Virol 73, 1209–1215.[CrossRef]
    [Google Scholar]
  6. Gray, W. L. ( 2003; ). Pathogenesis of simian varicella virus. J Med Virol 70, S4–S8.[CrossRef]
    [Google Scholar]
  7. Gray, W. L. ( 2004; ). Simian varicella: a model for human varicella-zoster virus infections. Rev Med Virol 14, 363–381.[CrossRef]
    [Google Scholar]
  8. Gray, W. L. & Oakes, J. E. ( 1984; ). Simian varicella virus DNA shares homology with human varicella-zoster virus DNA. Virology 136, 241–246.[CrossRef]
    [Google Scholar]
  9. Gray, W. L. & Byrne, B. H. ( 2003; ). Characterization of the simian varicella virus glycoprotein C, which is nonessential for in vitro replication. Arch Virol 148, 537–545.[CrossRef]
    [Google Scholar]
  10. Gray, W. L. & Mahalingam, R. ( 2005; ). A cosmid-based system for inserting mutations and foreign genes into the simian varicella virus genome. J Virol Methods 130, 89–94.[CrossRef]
    [Google Scholar]
  11. Gray, W. L., Starnes, B., White, M. W. & Mahalingam, R. ( 2001; ). The DNA sequence of the simian varicella virus genome. Virology 284, 123–130.[CrossRef]
    [Google Scholar]
  12. Grinfeld, E. & Kennedy, P. G. E. ( 2004; ). Translation of varicella-zoster virus genes during human ganglionic latency. Virus Genes 29, 317–319.[CrossRef]
    [Google Scholar]
  13. Inchauspé, G., Nagpal, S. & Ostrove, J. M. ( 1989; ). Mapping of two varicella-zoster virus-encoded genes that activate the expression of viral early and late genes. Virology 173, 700–709.[CrossRef]
    [Google Scholar]
  14. Kennedy, P. G. E. ( 2002a; ). Key issues in varicella-zoster virus latency. J Neurovirol 8 (Suppl. 2), 80–84.[CrossRef]
    [Google Scholar]
  15. Kennedy, P. G. E. ( 2002b; ). Varicella-zoster virus latency in human ganglia. Rev Med Virol 12, 327–334.[CrossRef]
    [Google Scholar]
  16. Kennedy, P. G. E., Grinfeld, E. & Bell, J. E. ( 2000; ). Varicella-zoster virus gene expression in latently infected and explanted human ganglia. J Virol 74, 11893–11898.[CrossRef]
    [Google Scholar]
  17. Kennedy, P. G. E., Grinfeld, E., Bontems, S. & Sadzot-Delvaux, C. ( 2001; ). Varicella-zoster virus gene expression in latently infected rat dorsal root ganglia. Virology 289, 218–223.[CrossRef]
    [Google Scholar]
  18. Lungu, O., Panagiotidis, C. A., Annunziato, P. W., Gershon, A. A. & Silverstein, S. J. ( 1998; ). Aberrant intracellular localization of varicella-zoster virus regulatory proteins during latency. Proc Natl Acad Sci U S A 95, 7080–7085.[CrossRef]
    [Google Scholar]
  19. Mahalingam, R., Clarke, P., Wellish, M., Dueland, A. N., Soike, K. F., Gilden, D. H. & Cohrs, R. ( 1992; ). Prevalence and distribution of latent simian varicella virus DNA in monkey ganglia. Virology 188, 193–197.[CrossRef]
    [Google Scholar]
  20. Mahalingam, R., Wellish, M., White, T., Soike, K., Kleinschmidt-DeMasters, B. K. & Gilden, D. H. ( 1998; ). Infectious simian varicella virus expressing the green fluorescent protein. J Neurovirol 4, 438–444.[CrossRef]
    [Google Scholar]
  21. Meier, J. L. & Straus, S. E. ( 1993; ). Varicella-zoster virus DNA polymerase and major DNA-binding protein genes have overlapping divergent promoters. J Virol 67, 7573–7581.
    [Google Scholar]
  22. Meier, J. L., Holman, R. P., Croen, K. D., Smialek, J. E. & Straus, S. E. ( 1993; ). Varicella-zoster virus transcription in human trigeminal ganglia. Virology 193, 193–200.[CrossRef]
    [Google Scholar]
  23. Meier, J. L., Luo, X., Sawadogo, M. & Straus, S. E. ( 1994; ). The cellular transcription factor USF cooperates with varicella-zoster virus immediate-early protein 62 to symmetrically activate a bidirectional viral promoter. Mol Cell Biol 14, 6896–6906.
    [Google Scholar]
  24. Perera, L. P., Mosca, J. D., Sadeghi-Zadeh, M., Ruyechan, W. T. & Hay, J. ( 1992; ). The varicella-zoster virus immediate early protein, IE62, can positively regulate its cognate promoter. Virology 191, 346–354.[CrossRef]
    [Google Scholar]
  25. Rahaus, M., Desloges, N., Yang, M., Ruyechan, W. T. & Wolff, M. H. ( 2003; ). Transcription factor USF, expressed during the entire phase of varicella-zoster virus infection, interacts physically with the major viral transactivator IE62 and plays a significant role in virus replication. J Gen Virol 84, 2957–2967.[CrossRef]
    [Google Scholar]
  26. Ruyechan, W. T., Peng, H., Yang, M. & Hay, J. ( 2003; ). Cellular factors and IE62 activation of VZV promoters. J Med Virol 70, S90–S94.[CrossRef]
    [Google Scholar]
  27. Schug, J. & Overton, G. C. ( 1997; ). tess: transcription element search software on the WWW. Technical Report CBIL-TR-1997–1001-v0.0. Computational Biology and Informatics Laboratory, School of Medicine, University of Pennsylvania, Philadelphia, PA.
  28. White, T. M., Gilden, D. H. & Mahalingam, R. ( 2001; ). An animal model of varicella virus infection. Brain Pathol 11, 475–479.[CrossRef]
    [Google Scholar]
  29. Wingender, E., Chen, X., Hehl, R. & 7 other authors ( 2000; ). transfac: an integrated system for gene expression regulation. Nucleic Acids Res 28, 316–319.[CrossRef]
    [Google Scholar]
  30. Yang, M., Hay, J. & Ruyechan, W. T. ( 2004; ). The DNA element controlling expression of the varicella-zoster virus open reading frame 28 and 29 genes consists of two divergent unidirectional promoters which have a common USF site. J Virol 78, 10939–10952.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81645-0
Loading
/content/journal/jgv/10.1099/vir.0.81645-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error