1887

Abstract

Kaposi's sarcoma-associated herpesvirus (KSHV) is implicated causally in the development of several human malignancies, including primary effusion lymphoma (PEL). PEL cells serve as tools for KSHV research, as most of them are latently infected and allow lytic virus replication in response to various stimuli. 12--Tetradecanoyl-phorbol-13-acetate (TPA) is the most potent inducer of lytic KSHV reactivation; nevertheless, the exact mechanism by which it induces reactivation remains unknown. It has previously been reported by our group that the protein kinase C (PKC) isoform plays a crucial role in TPA-mediated KSHV reactivation. Here, the activation pathway was dissected and it was demonstrated that TPA induces KSHV reactivation via stimulation of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway. Western blot analysis revealed a rapid phosphorylation of ERK1/2. Cells treated with MAPK/ERK inhibitors before TPA addition demonstrated repression of ERK1/2 phosphorylation, which was associated with a block of KSHV lytic-gene expression. This inhibition prevented c-Fos accumulation, yet increased c-Jun phosphorylation. Similar results were obtained in response to rottlerin, a selective PKC inhibitor. Notably, the PKC inhibitor GF 109203X reduced ERK1/2 phosphorylation, c-Fos accumulation, c-Jun phosphorylation and KSHV reactivation. It is proposed that TPA induces KSHV reactivation through at least two arms. The first involves PKC, ERK phosphorylation and c-Fos accumulation, whilst the second requires another PKC isoform that induces the phosphorylation of c-Jun. c-Fos and c-Jun jointly form an active AP-1 complex, which functions to activate the lytic cascade of KSHV.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81619-0
2006-04-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/4/795.html?itemId=/content/journal/jgv/10.1099/vir.0.81619-0&mimeType=html&fmt=ahah

References

  1. Akula S. M., Ford P. W., Whitman A. G., Hamden K. E., Shelton J. G., McCubrey J. A. 2004; Raf promotes human herpesvirus-8 (HHV-8/KSHV) infection. Oncogene 23:5227–5241 [CrossRef]
    [Google Scholar]
  2. Alessi D. R., Cuenda A., Cohen P., Dudley D. T., Saltiel A. R. 1995; PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo . J Biol Chem 270:27489–27494 [CrossRef]
    [Google Scholar]
  3. Barber S. A., Bruett L., Douglass B. R., Herbst D. S., Zink M. C., Clements J. E. 2002; Visna virus-induced activation of MAPK is required for virus replication and correlates with virus-induced neuropathology. J Virol 76:817–828 [CrossRef]
    [Google Scholar]
  4. Bechtel J. T., Liang Y., Hvidding J., Ganem D. 2003; Host range of Kaposi's sarcoma-associated herpesvirus in cultured cells. J Virol 77:6474–6481 [CrossRef]
    [Google Scholar]
  5. Benn J., Su F., Doria M., Schneider R. J. 1996; Hepatitis B virus HBx protein induces transcription factor AP-1 by activation of extracellular signal-regulated and c-Jun N-terminal mitogen-activated protein kinases. J Virol 70:4978–4985
    [Google Scholar]
  6. Blackbourn D. J., Fujimura S., Kutzkey T., Levy J. A. 2000; Induction of human herpesvirus-8 gene expression by recombinant interferon gamma. AIDS 14:98–99 [CrossRef]
    [Google Scholar]
  7. Blass M., Kronfeld I., Kazimirsky G., Blumberg P. M., Brodie C. 2002; Tyrosine phosphorylation of protein kinase C δ is essential for its apoptotic effect in response to etoposide. Mol Cell Biol 22:182–195 [CrossRef]
    [Google Scholar]
  8. Boshoff C., Gao S.-J., Healy L. E. & 10 other authors 1998; Establishing a KSHV+ cell line (BCP-1) from peripheral blood and characterizing its growth in Nod/SCID mice. Blood 91:1671–1679
    [Google Scholar]
  9. Brown H. J., Song M. J., Deng H., Wu T.-T., Cheng G., Sun R. 2003; NF- κ B inhibits gammaherpesvirus lytic replication. J Virol 77:8532–8540 [CrossRef]
    [Google Scholar]
  10. Bruder J. T., Kovesdi I. 1997; Adenovirus infection stimulates the Raf/MAPK signaling pathway and induces interleukin-8 expression. J Virol 71:398–404
    [Google Scholar]
  11. Cesarman E., Moore P. S., Rao P. H., Inghirami G., Knowles D. M., Chang Y. 1995; In vitro establishment and characterization of two acquired immunodeficiency syndrome-related lymphoma cell lines (BC-1 and BC-2) containing Kaposi's sarcoma-associated herpesvirus-like (KSHV) DNA sequences. Blood 86:2708–2714
    [Google Scholar]
  12. Chang Y., Cesarman E., Pessin M. S., Lee F., Culpepper J., Knowles D. M., Moore P. S. 1994; Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science 266:1865–1869 [CrossRef]
    [Google Scholar]
  13. Chang J., Renne R., Dittmer D., Ganem D. 2000; Inflammatory cytokines and the reactivation of Kaposi's sarcoma-associated herpesvirus lytic replication. Virology 266:17–25 [CrossRef]
    [Google Scholar]
  14. Chatterjee M., Osborne J., Bestetti G., Chang Y., Moore P. S. 2002; Viral IL-6-induced cell proliferation and immune evasion of interferon activity. Science 298:1432–1435 [CrossRef]
    [Google Scholar]
  15. Chen J., Stinski M. F. 2002; Role of regulatory elements and the MAPK/ERK or p38 MAPK pathways for activation of human cytomegalovirus gene expression. J Virol 76:4873–4885 [CrossRef]
    [Google Scholar]
  16. Chen J., Ueda K., Sakakibara S., Okuno T., Parravicini C., Corbellino M., Yamanishi K. 2001; Activation of latent Kaposi's sarcoma-associated herpesvirus by demethylation of the promoter of the lytic transactivator. Proc Natl Acad Sci U S A 98:4119–4124 [CrossRef]
    [Google Scholar]
  17. Cohen A., Wolf D. G., Guttman-Yassky E., Sarid R. 2005; Kaposi's sarcoma-associated herpesvirus: clinical, diagnostic, and epidemiological aspects. Crit Rev Clin Lab Sci 42:101–153 [CrossRef]
    [Google Scholar]
  18. Davis D. A., Rinderknecht A. S., Zoeteweij J. P., Aoki Y., Read-Connole E. L., Tosato G., Blauvelt A., Yarchoan R. 2001; Hypoxia induces lytic replication of Kaposi sarcoma-associated herpesvirus. Blood 97:3244–3250 [CrossRef]
    [Google Scholar]
  19. Deutsch E., Cohen A., Kazimirsky G., Dovrat S., Rubinfeld H., Brodie C., Sarid R. 2004; Role of protein kinase C δ in reactivation of Kaposi's sarcoma-associated herpesvirus. J Virol 78:10187–10192 [CrossRef]
    [Google Scholar]
  20. Dourmishev L. A., Dourmishev A. L., Palmeri D., Schwartz R. A., Lukac D. M. 2003; Molecular genetics of Kaposi's sarcoma-associated herpesvirus (human herpesvirus-8) epidemiology and pathogenesis. Microbiol Mol Biol Rev 67:175–212 [CrossRef]
    [Google Scholar]
  21. Dudley D. T., Pang L., Decker S. J., Bridges A. J., Saltiel A. R. 1995; A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc Natl Acad Sci U S A 92:7686–7689 [CrossRef]
    [Google Scholar]
  22. Favata M. F., Horiuchi K. Y., Manos E. J. & 11 other authors 1998; Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem 273:18623–18632 [CrossRef]
    [Google Scholar]
  23. Fenton M., Sinclair A. J. 1999; Divergent requirements for the MAPKERK signal transduction pathway during initial virus infection of quiescent primary B cells and disruption of Epstein-Barr virus latency by phorbol esters. J Virol 73:8913–8916
    [Google Scholar]
  24. Grundhoff A., Ganem D. 2004; Inefficient establishment of KSHV latency suggests an additional role for continued lytic replication in Kaposi sarcoma pathogenesis. J Clin Invest 113:124–136 [CrossRef]
    [Google Scholar]
  25. Gschwendt M., Muller H. J., Kielbassa K., Zang R., Kittstein W., Rincke G., Marks F. 1994; Rottlerin, a novel protein kinase inhibitor. Biochem Biophys Res Commun 199:93–98 [CrossRef]
    [Google Scholar]
  26. Gwack Y., Hwang S., Lim C., Won Y. S., Lee C. H., Choe J. 2002; Kaposi's sarcoma-associated herpesvirus open reading frame 50 stimulates the transcriptional activity of STAT3. J Biol Chem 277:6438–6442 [CrossRef]
    [Google Scholar]
  27. Haque M., Davis D. A., Wang V., Widmer I., Yarchoan R. 2003; Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) contains hypoxia response elements: relevance to lytic induction by hypoxia. J Virol 77:6761–6768 [CrossRef]
    [Google Scholar]
  28. He T.-C., Zhou S., da Costa L. T., Yu J., Kinzler K. W., Vogelstein B. 1998; A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci U S A 95:2509–2514 [CrossRef]
    [Google Scholar]
  29. Jenner R. G., Albà M. M., Boshoff C., Kellam P. 2001; Kaposi's sarcoma-associated herpesvirus latent and lytic gene expression as revealed by DNA arrays. J Virol 75:891–902 [CrossRef]
    [Google Scholar]
  30. Kolch W., Calder M., Gilbert D. 2005; When kinases meet mathematics: the systems biology of MAPK signalling. FEBS Lett 579:1891–1895 [CrossRef]
    [Google Scholar]
  31. Kong X., San Juan H., Behera A., Peeples M. E., Wu J., Lockey R. F., Mohapatra S. S. 2004; ERK-1/2 activity is required for efficient RSV infection. FEBS Lett 559:33–38 [CrossRef]
    [Google Scholar]
  32. Krishnan H. H., Naranatt P. P., Smith M. S., Zeng L., Bloomer C., Chandran B. 2004; Concurrent expression of latent and a limited number of lytic genes with immune modulation and antiapoptotic function by Kaposi's sarcoma-associated herpesvirus early during infection of primary endothelial and fibroblast cells and subsequent decline of lytic gene expression. J Virol 78:3601–3620 [CrossRef]
    [Google Scholar]
  33. Lan K., Kuppers D. A., Robertson E. S. 2005; Kaposi's sarcoma-associated herpesvirus reactivation is regulated by interaction of latency-associated nuclear antigen with recombination signal sequence-binding protein J κ , the major downstream effector of the Notch signaling pathway. J Virol 79:3468–3478 [CrossRef]
    [Google Scholar]
  34. Liang Y., Ganem D. 2003; Lytic but not latent infection by Kaposi's sarcoma-associated herpesvirus requires host CSL protein, the mediator of Notch signaling. Proc Natl Acad Sci U S A 100:8490–8495 [CrossRef]
    [Google Scholar]
  35. Liang Y., Chang J., Lynch S. J., Lukac D. M., Ganem D. 2002; The lytic switch protein of KSHV activates gene expression via functional interaction with RBP-J κ (CSL), the target of the Notch signaling pathway. Genes Dev 16:1977–1989 [CrossRef]
    [Google Scholar]
  36. Luo H., Yanagawa B., Zhang J. & 7 other authors 2002; Coxsackievirus B3 replication is reduced by inhibition of the extracellular signal-regulated kinase (ERK) signaling pathway. J Virol 76:3365–3373 [CrossRef]
    [Google Scholar]
  37. McCormick C., Ganem D. 2005; The kaposin B protein of KSHV activates the p38/MK2 pathway and stabilizes cytokine mRNAs. Science 307:739–741 [CrossRef]
    [Google Scholar]
  38. McLean T. I., Bachenheimer S. L. 1999; Activation of cJUN N-terminal kinase by herpes simplex virus type 1 enhances viral replication. J Virol 73:8415–8426
    [Google Scholar]
  39. Mercader M., Taddeo B., Panella J. R., Chandran B., Nickoloff B. J., Foreman K. E. 2000; Induction of HHV-8 lytic cycle replication by inflammatory cytokines produced by HIV-1-infected T cells. Am J Pathol 156:1961–1971 [CrossRef]
    [Google Scholar]
  40. Miller G., Rigsby M. O., Heston L. & 7 other authors 1996; Antibodies to butyrate-inducible antigens of Kaposi's sarcoma-associated herpesvirus in patients with HIV-1 infection. N Engl J Med 334:1292–1297 [CrossRef]
    [Google Scholar]
  41. Moore P. S., Gao S.-J., Dominguez G. & 7 other authors 1996; Primary characterization of a herpesvirus agent associated with Kaposi's sarcoma. J Virol 70:549–558
    [Google Scholar]
  42. Munshi N., Ganju R. K., Avraham S., Mesri E. A., Groopman J. E. 1999; Kaposi's sarcoma-associated herpesvirus-encoded G protein-coupled receptor activation of c-Jun amino-terminal kinase/stress-activated protein kinase and Lyn kinase is mediated by related adhesion focal tyrosine kinase/proline-rich tyrosine kinase 2. J Biol Chem 274:31863–31867 [CrossRef]
    [Google Scholar]
  43. Naranatt P. P., Akula S. M., Zien C. A., Krishnan H. H., Chandran B. 2003; Kaposi's sarcoma-associated herpesvirus induces the phosphatidylinositol 3-kinase-PKC- ζ -MEK-ERK signaling pathway in target cells early during infection: implications for infectivity. J Virol 77:1524–1539 [CrossRef]
    [Google Scholar]
  44. Naranatt P. P., Krishnan H. H., Svojanovsky S. R., Bloomer C., Mathur S., Chandran B. 2004; Host gene induction and transcriptional reprogramming in Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8)-infected endothelial, fibroblast, and B cells: insights into modulation events early during infection. Cancer Res 64:72–84 [CrossRef]
    [Google Scholar]
  45. Planz O., Pleschka S., Ludwig S. 2001; MEK-specific inhibitor U0126 blocks spread of Borna disease virus in cultured cells. J Virol 75:4871–4877 [CrossRef]
    [Google Scholar]
  46. Renne R., Zhong W., Herndier B., McGrath M., Abbey N., Kedes D., Ganem D. 1996; Lytic growth of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) in culture. Nat Med 2:342–346 [CrossRef]
    [Google Scholar]
  47. Rodems S. M., Spector D. H. 1998; Extracellular signal-regulated kinase activity is sustained early during human cytomegalovirus infection. J Virol 72:9173–9180
    [Google Scholar]
  48. Rubinfeld H., Seger R. 2004; The ERK cascade as a prototype of MAPK signaling pathways. Methods Mol Biol 250:1–28
    [Google Scholar]
  49. Sakakibara S., Ueda K., Chen J., Okuno T., Yamanishi K. 2001; Octamer-binding sequence is a key element for the autoregulation of Kaposi's sarcoma-associated herpesvirus ORF50/Lyta gene expression. J Virol 75:6894–6900 [CrossRef]
    [Google Scholar]
  50. Sarid R., Flore O., Bohenzky R. A., Chang Y., Moore P. S. 1998; Transcription mapping of the Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) genome in a body cavity-based lymphoma cell line (BC-1). J Virol 72:1005–1012
    [Google Scholar]
  51. Sodhi A., Montaner S., Patel V., Zohar M., Bais C., Mesri E. A., Gutkind J. S. 2000; The Kaposi's sarcoma-associated herpes virus G protein-coupled receptor up-regulates vascular endothelial growth factor expression and secretion through mitogen-activated protein kinase and p38 pathways acting on hypoxia-inducible factor 1 α . Cancer Res 60:4873–4880
    [Google Scholar]
  52. Song J., Ohkura T., Sugimoto M., Mori Y., Inagi R., Yamanishi K., Yoshizaki K., Nishimoto N. 2002; Human interleukin-6 induces human herpesvirus-8 replication in a body cavity-based lymphoma cell line. J Med Virol 68:404–411 [CrossRef]
    [Google Scholar]
  53. Sun R., Lin S.-F., Staskus K., Gradoville L., Grogan E., Haase A., Miller G. 1999; Kinetics of Kaposi's sarcoma-associated herpesvirus gene expression. J Virol 73:2232–2242
    [Google Scholar]
  54. Suomalainen M., Nakano M. Y., Boucke K., Keller S., Greber U. F. 2001; Adenovirus-activated PKA and p38/MAPK pathways boost microtubule-mediated nuclear targeting of virus. EMBO J 20:1310–1319 [CrossRef]
    [Google Scholar]
  55. Toullec D., Pianetti P., Coste H. & 10 other authors 1991; The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C. J Biol Chem 266:15771–15781
    [Google Scholar]
  56. Varthakavi V., Browning P. J., Spearman P. 1999; Human immunodeficiency virus replication in a primary effusion lymphoma cell line stimulates lytic-phase replication of Kaposi's sarcoma-associated herpesvirus. J Virol 73:10329–10338
    [Google Scholar]
  57. Vieira J., O'Hearn P., Kimball L., Chandran B., Corey L. 2001; Activation of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) lytic replication by human cytomegalovirus. J Virol 75:1378–1386 [CrossRef]
    [Google Scholar]
  58. Wang S., Liu S., Wu M.-H., Geng Y., Wood C. 2001; Identification of a cellular protein that interacts and synergizes with the RTA (ORF50) protein of Kaposi's sarcoma-associated herpesvirus in transcriptional activation. J Virol 75:11961–11973 [CrossRef]
    [Google Scholar]
  59. Wang S. E., Wu F. Y., Chen H., Shamay M., Zheng Q., Hayward G. S. 2004; Early activation of the Kaposi's sarcoma-associated herpesvirus RTA, RAP, and MTA promoters by the tetradecanoyl phorbol acetate-induced AP1 pathway. J Virol 78:4248–4267 [CrossRef]
    [Google Scholar]
  60. West J. T., Wood C. 2003; The role of Kaposi's sarcoma-associated herpesvirus/human herpesvirus-8 regulator of transcription activation (RTA) in control of gene expression. Oncogene 22:5150–5163 [CrossRef]
    [Google Scholar]
  61. Yang X., Gabuzda D. 1999; Regulation of human immunodeficiency virus type 1 infectivity by the ERK mitogen-activated protein kinase signaling pathway. J Virol 73:3460–3466
    [Google Scholar]
  62. Ye J., Shedd D., Miller G. 2005; An Sp1 response element in the Kaposi's sarcoma-associated herpesvirus open reading frame 50 promoter mediates lytic cycle induction by butyrate. J Virol 79:1397–1408 [CrossRef]
    [Google Scholar]
  63. Zachos G., Clements B., Conner J. 1999; Herpes simplex virus type 1 infection stimulates p38/c-Jun N-terminal mitogen-activated protein kinase pathways and activates transcription factor AP-1. J Biol Chem 274:5097–5103 [CrossRef]
    [Google Scholar]
  64. Zhu F. X., Cusano T., Yuan Y. 1999; Identification of the immediate-early transcripts of Kaposi's sarcoma-associated herpesvirus. J Virol 73:5556–5567
    [Google Scholar]
  65. Zoeteweij J. P., Moses A. V., Rinderknecht A. S., Davis D. A., Overwijk W. W., Yarchoan R., Orenstein J. M., Blauvelt A. 2001; Targeted inhibition of calcineurin signaling blocks calcium-dependent reactivation of Kaposi sarcoma-associated herpesvirus. Blood 97:2374–2380 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81619-0
Loading
/content/journal/jgv/10.1099/vir.0.81619-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error