1887

Abstract

The proteolytic processing of human immunodeficiency virus (HIV) particles mediated by the viral -encoded protease (PR) is essential for viral infectivity. The coding sequence partially overlaps with the coding sequence and is translated as a Gag–Pol polyprotein precursor. Within Gag–Pol, the C-terminal p6 domain is replaced by a transframe peptide referred to as p6*, which separates the Gag nucleocapsid domain from PR. Several previous studies have ascribed a PR-suppression regulatory function to p6*. Here, it was demonstrated that an HIV-1 Gag–Pol lacking p6* is efficiently incorporated into virions when coexpressed with HIV-1 Gag precursor. However, the released virions are not processed appropriately and show a greatly reduced viral infectivity. This suggests that the p6* is indispensable during the process of PR-mediated virus particle maturation.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81601-0
2006-07-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/7/2041.html?itemId=/content/journal/jgv/10.1099/vir.0.81601-0&mimeType=html&fmt=ahah

References

  1. Arrigo, S. J. & Huffman, K. ( 1995; ). Potent inhibition of human immunodeficiency virus type 1 (HIV-1) replication by inducible expression of HIV-1 PR multimers. J Virol 69, 5988–5994.
    [Google Scholar]
  2. Bleiber, G., Peters, S., Martinez, R., Cmarko, D., Meylan, P. & Telenti, A. ( 2004; ). The central region of human immunodeficiency virus type 1 p6 protein (Gag residues S14–I31) is dispensable for the virus in vitro. J Gen Virol 85, 921–927.[CrossRef]
    [Google Scholar]
  3. Burstein, H., Bizub, D. & Skalka, A. M. ( 1991; ). Assembly and processing of avian retroviral gag polyproteins containing linked protease dimers. J Virol 65, 6165–6172.
    [Google Scholar]
  4. Chen, Y.-L., Ts'ai, P.-W., Yang, C.-C. & Wang, C.-T. ( 1997; ). Generation of infectious virus particles by transient co-expression of human immunodeficiency virus type 1 gag mutants. J Gen Virol 78, 2497–2501.
    [Google Scholar]
  5. Chen, S.-W., Chiu, H.-C., Liao, W.-H., Wang, F. D., Chen, S.-S. & Wang, C.-T. ( 2004; ). The virus-associated human immunodeficiency virus type 1 Gag-Pol carrying an active protease domain in the matrix region is severely defective both in autoprocessing and in trans processing of gag particles. Virology 318, 534–541.[CrossRef]
    [Google Scholar]
  6. Chiu, H.-C., Yao, S.-Y. & Wang, C.-T. ( 2002; ). Coding sequences upstream of the human immunodeficiency virus type 1 reverse transcriptase domain in Gag-Pol are not essential for incorporation of the Pr160 gag-pol into virus particles. J Virol 76, 3221–3231.[CrossRef]
    [Google Scholar]
  7. Engelman, A., Englund, G., Orenstein, J. M., Martin, M. A. & Craigie, R. ( 1995; ). Multiple effects of mutations in human immunodeficiency virus type 1 integrase on viral replication. J Virol 69, 2729–2736.
    [Google Scholar]
  8. Erickson-Viitanen, S., Manfredi, J., Viitanen, P., Tribe, D. E., Tritch, R., Hutchison, C. A., III, Loeb, D. D. & Swanstrom, R. ( 1989; ). Cleavage of HIV-1 gag polyprotein synthesized in vitro: sequential cleavage by the viral protease. AIDS Res Hum Retroviruses 5, 577–591.[CrossRef]
    [Google Scholar]
  9. Freed, E. O. ( 1998; ). HIV Gag proteins: diverse functions in the virus life cycle. Virology 251, 1–15.[CrossRef]
    [Google Scholar]
  10. Gottlinger, H. G., Sodroski, J. G. & Haseltine, W. A. ( 1989; ). Role of capsid precursor processing and myristoylation in morphogenesis and infectivity of human immunodeficiency virus 1. Proc Natl Acad Sci U S A 86, 5781–5785.[CrossRef]
    [Google Scholar]
  11. Henderson, L. E., Bowers, M. A., Sowder, R. C., II Serabyn, S. A., Johnson, D. G., Bess, J. W., Jr, Arthur, L. O., Bryant, D. K. & Fenselau, C. ( 1992; ). Gag proteins of the highly replicative MN strain of human immunodeficiency virus type 1: posttranslational modifications, proteolytic processing, and complete amino acid sequences. J Virol 66, 1856–1865.
    [Google Scholar]
  12. Hunter, E. ( 1994; ). Macromolecular interactions in the assembly of HIV and other retroviruses. Semin Virol 5, 71–83.[CrossRef]
    [Google Scholar]
  13. Jacks, T., Power, M. D., Masiarz, F. R., Luciw, P. A., Barr, P. J. & Varmus, H. E. ( 1988; ). Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature 331, 280–283.[CrossRef]
    [Google Scholar]
  14. Kaplan, A. H., Manchester, M. & Swanstorm, M. ( 1994; ). The activity of the protease of human immunodeficiency virus type 1 is initiated at the membrane of infected cells before the release of viral proteins and is required for release to occur with maximum efficiency. J Virol 68, 6782–6786.
    [Google Scholar]
  15. Kohl, N. E., Emini, E. A., Schleif, W. E., Davis, L. J., Heimbach, J. C., Dixon, R. A. F., Scolnick, E. M. & Sigal, I. S. ( 1988; ). Active human immunodeficiency virus protease is required for viral infectivity. Proc Natl Acad Sci U S A 85, 4686–4890.[CrossRef]
    [Google Scholar]
  16. Krausslich, H.-G. ( 1991; ). Human immunodeficiency virus proteinase dimer as component of the viral polyprotein prevents particle assembly and viral infectivity. Proc Natl Acad Sci U S A 88, 3213–3217.[CrossRef]
    [Google Scholar]
  17. Leis, J., Baltimore, D., Bishop, J. B. & 8 other authors ( 1988; ). Standardized and simplified nomenclature for proteins common to all retroviruses. J Virol 62, 1808–1809.
    [Google Scholar]
  18. Liao, W.-H. & Wang, C.-T. ( 2004; ). Characterization of human immunodeficiency virus type 1 Pr160 gag-pol mutants with truncations downstream of the protease domain. Virology 329, 180–188.[CrossRef]
    [Google Scholar]
  19. Louis, J. M., Dyda, F., Nashed, N. T., Kimmel, A. R. & Davies, D. R. ( 1998; ). Hydrophilic peptides derived from the transframe region of Gag-Pol inhibit the HIV-1 protease. Biochemistry 37, 2105–2110.[CrossRef]
    [Google Scholar]
  20. Louis, J. M., Clore, G. M. & Gronenborn, A. M. ( 1999; ). Autoprocessing of HIV-1 protease is tightly coupled to protein folding. Nat Struct Biol 6, 868–875.[CrossRef]
    [Google Scholar]
  21. Mak, J., Jiang, M., Wainberg, M. A., Hammarskjöld, M. L., Rekosh, D. & Kleiman, L. ( 1994; ). Role of Pr160gag-pol in mediating the selective incorporation of tRNA(Lys) into human immunodeficiency virus type 1 particles. J Virol 68, 2065–2072.
    [Google Scholar]
  22. Mervis, R. J., Ahmad, N., Lillehoj, E. P., Raum, M. G., Salazar, F. H. R., Chan, H. W. & Venkatesan, V. ( 1988; ). The gag gene products of human immunodeficiency virus type 1: alignment within the gag open reading frame, identification of posttranslational modifications, and evidence for alternative gag precursors. J Virol 62, 3993–4002.
    [Google Scholar]
  23. Navia, M. A. & McKeever, B. M. ( 1990; ). A role for the aspartyl protease from the human immunodeficiency type 1 (HIV-1) in the orchestration of virus assembly. Ann N Y Acad Sci 616, 73–85.[CrossRef]
    [Google Scholar]
  24. Page, K. A., Landau, N. R. & Littman, D. R. ( 1990; ). Construction and use of a human immunodeficiency virus vector for analysis of virus infectivity. J Virol 64, 5270–5276.
    [Google Scholar]
  25. Park, J. & Morrow, C. D. ( 1991; ). Overexpression of the gag-pol precursor from human immunodeficiency virus type 1 proviral genomes results in efficient proteolytic processing in the absence of virion production. J Virol 65, 5111–5117.
    [Google Scholar]
  26. Partin, K., Krausslich, H. G., Ehrlich, L., Wimmer, E. & Carter, C. ( 1990; ). Mutational analysis of a native substrate of the human immunodeficiency virus type 1 proteinase. J Virol 64, 3938–3947.
    [Google Scholar]
  27. Partin, K., Zybarth, G., Ehrlich, L., DeCrombrugghe, M., Wimmer, E. & Carter, C. ( 1991; ). Deletion of sequences upstream of the proteinase improves the proteolytic processing of human immunodeficiency virus type 1. Proc Natl Acad Sci U S A 88, 4776–4780.[CrossRef]
    [Google Scholar]
  28. Paulus, C., Hellebrand, S., Tessmer, U., Wolf, H., Krausslich, H.-G. & Wagner, R. ( 1999; ). Competitive inhibition of immunodeficiency virus type 1 protease by the Gag-Pol transframe protein. J Biol Chem 274, 21539–21543.[CrossRef]
    [Google Scholar]
  29. Paulus, C., Ludwig, C. & Wagner, R. ( 2004; ). Contribution of the Gag-Pol transframe domain p6* and its coding sequence to morphogenesis and replication of human immunodeficiency virus type 1. Virology 330, 271–283.[CrossRef]
    [Google Scholar]
  30. Peng, C., Ho, B. K., Chang, T. W. & Chang, N. T. ( 1989; ). Role of human immunodeficiency virus type 1-specific protease in core protein maturation and viral infectivity. J Virol 63, 2550–2556.
    [Google Scholar]
  31. Pettit, S. C., Gulnik, S., Everitt, L. & Kaplan, A. H. ( 2003; ). The dimer interfaces of protease and extra-protease domains influence the activation of protease and the stability of Gag-Pol cleavage. J Virol 77, 366–374.[CrossRef]
    [Google Scholar]
  32. Quillent, C., Borman, A. M., Paulous, S., Dauguet, C. & Clavel, F. ( 1996; ). Extensive regions of pol are required for efficient human immunodeficiency virus polyprotein processing and particle maturation. Virology 219, 29–36.[CrossRef]
    [Google Scholar]
  33. Rose, J. R., Babe, L. M. & Craik, C. S. ( 1995; ). Defining the level of human immunodeficiency virus type 1 (HIV-1) protease activity required for HIV-1 particle maturation and infectivity. J Virol 69, 2751–2758.
    [Google Scholar]
  34. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  35. Shehu-Xhilaga, M., Crowe, S. M. & Mak, J. ( 2001; ). Maintenance of the Gag/Gag-Pol ratio is important for human immunodeficiency virus type 1 RNA dimerization and viral infectivity. J Virol 75, 1834–1841.[CrossRef]
    [Google Scholar]
  36. Swanstrom, R. & Wills, J. W. ( 1997; ). Synthesis, assembly, and processing of viral proteins. In Retroviruses. Edited by J. M. Coffin, S. H. Hughes & H. E. Varmus. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  37. Tessmer, U. & Krausslich, H.-G. ( 1998; ). Cleavage of human immunodeficiency virus type 1 proteinase from the N-terminally adjacent p6* protein is essential for efficient Gag polyprotein processing and viral infectivity. J Virol 72, 3459–3463.
    [Google Scholar]
  38. Wang, C.-T., Lai, H.-Y. & Li, J.-J. ( 1998; ). Analysis of minimal human immunodeficiency virus type 1 gag coding sequences capable of virus-like particle assembly and release. J Virol 72, 7950–7959.
    [Google Scholar]
  39. Wang, C.-T., Chou, Y.-C. & Chiang, C.-C. ( 2000; ). Assembly and processing of human immunodeficiency virus gag mutants containing a partial replacement of the matrix domain by the viral protease domain. J Virol 74, 3418–3422.[CrossRef]
    [Google Scholar]
  40. Wills, J. W. & Craven, R. C. ( 1991; ). Form, function, and use of retroviral gag proteins. AIDS 5, 639–654.[CrossRef]
    [Google Scholar]
  41. Wondrak, E. M. & Louis, J. M. ( 1996; ). Influence of flanking sequences on the dimer stability of human immunodeficiency virus type 1 protease. Biochemistry 35, 12957–12962.[CrossRef]
    [Google Scholar]
  42. Xiang, Y., Ridky, T. W., Krishna, N. K. & Leis, J. ( 1997; ). Altered Rous sarcoma virus Gag polyprotein processing and its effects on particle formation. J Virol 71, 2083–2091.
    [Google Scholar]
  43. Yee, J. K., Friedmann, T. & Burns, J. C. ( 1994; ). Generation of high-titer pseudotyped retroviral vectors with very broad host range. Methods Cell Biol 43, 99–112.
    [Google Scholar]
  44. Zybarth, G. & Carter, C. ( 1995; ). Domains upstream of the protease (PR) in human immunodeficiency virus type 1 Gag-Pol influence PR autoprocessing. J Virol 69, 3878–3884.
    [Google Scholar]
  45. Zybarth, G., Krausslich, H. G., Partin, K. & Carter, C. ( 1994; ). Proteolytic activity of novel human immunodeficiency virus type 1 proteinase proteins from a precursor with a blocking mutation at the N terminus of the PR domain. J Virol 68, 240–250.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81601-0
Loading
/content/journal/jgv/10.1099/vir.0.81601-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error