1887

Abstract

Two different severe acute respiratory syndrome (SARS) vaccine strategies were evaluated for their ability to protect against live SARS coronavirus (CoV) challenge in a murine model of infection. A whole killed (inactivated by -propiolactone) SARS-CoV vaccine and a combination of two adenovirus-based vectors, one expressing the nucleocapsid (N) and the other expressing the spike (S) protein (collectively designated Ad S/N), were evaluated for the induction of serum neutralizing antibodies and cellular immune responses and their ability to protect against pulmonary SARS-CoV replication. The whole killed virus (WKV) vaccine given subcutaneously to 129S6/SvEv mice was more effective than the Ad S/N vaccine administered either intranasally or intramuscularly in inhibiting SARS-CoV replication in the murine respiratory tract. This protective ability of the WKV vaccine correlated with the induction of high serum neutralizing-antibody titres, but not with cellular immune responses as measured by gamma interferon secretion by mouse splenocytes. Titres of serum neutralizing antibodies induced by the Ad S/N vaccine administered intranasally or intramuscularly were significantly lower than those induced by the WKV vaccine. However, Ad S/N administered intranasally, but not intramuscularly, significantly limited SARS-CoV replication in the lungs. Among the vaccine groups, SARS-CoV-specific IgA was found only in the sera of mice immunized intranasally with Ad S/N, suggesting that mucosal immunity may play a role in protection for the intranasal Ad S/N delivery system. Finally, the sera of vaccinated mice contained antibodies to S, further suggesting a role for this protein in conferring protective immunity against SARS-CoV infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81579-0
2006-03-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/3/641.html?itemId=/content/journal/jgv/10.1099/vir.0.81579-0&mimeType=html&fmt=ahah

References

  1. Antón I. M., González S., Bullido M. J., Corsín M., Risco C., Langeveld J. P. M., Enjuanes L. 1996; Cooperation between transmissible gastroenteritis coronavirus (TGEV) structural proteins in the in vitro induction of virus-specific antibodies. Virus Res 46:111–124 [CrossRef]
    [Google Scholar]
  2. Babcock G. J., Esshaki D. J., Thomas W. D. Jr, Ambrosino D. M. 2004; Amino acids 270 to 510 of the severe acute respiratory syndrome coronavirus spike protein are required for interaction with receptor. J Virol 78:4552–4560 [CrossRef]
    [Google Scholar]
  3. Berger A., Drosten Ch., Doerr H. W., Stürmer M., Preiser W. 2004; Severe acute respiratory syndrome (SARS) – paradigm of an emerging viral infection. J Clin Virol 29:13–22 [CrossRef]
    [Google Scholar]
  4. Bisht H., Roberts A., Vogel L., Bukreyev A., Collins P. L., Murphy B. R., Subbarao K., Moss B. 2004; Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice. Proc Natl Acad Sci U S A 101:6641–6646 [CrossRef]
    [Google Scholar]
  5. Boots A. M., Kusters J. G., van Noort J. M., Zwaagstra K. A., Rijke E., van der Zeijst B. A., Hensen E. J. 1991; Localization of a T-cell epitope within the nucleocapsid protein of avian coronavirus. Immunology 74:8–13
    [Google Scholar]
  6. Buchholz U. J., Bukreyev A., Yang L., Lamirande E. W., Murphy B. R., Subbarao K., Collins P. L. 2004; Contributions of the structural proteins of severe acute respiratory syndrome coronavirus to protective immunity. Proc Natl Acad Sci U S A 101:9804–9809 [CrossRef]
    [Google Scholar]
  7. Bukreyev A., Lamirande E. W., Buchholz U. J., Vogel L. N., Elkins W. R., St Claire M., Murphy B. R., Subbarao K., Collins P. L. 2004; Mucosal immunisation of African green monkeys ( Cercopithecus aethiops ) with an attenuated parainfluenza virus expressing the SARS coronavirus spike protein for the prevention of SARS. Lancet 363:2122–2127 [CrossRef]
    [Google Scholar]
  8. Cavanagh D. 2003; Severe acute respiratory syndrome vaccine development: experiences of vaccination against avian infectious bronchitis coronavirus. Avian Pathol 32:567–582 [CrossRef]
    [Google Scholar]
  9. CDC NIH. 1999 Biosafety in Microbiological and Biomedical Laboratories , 4th edn. Washington, DC: US Government Printing Office;
    [Google Scholar]
  10. Collisson E. W., Pei J., Dzielawa J., Seo S. H. 2000; Cytotoxic T lymphocytes are critical in the control of infectious bronchitis virus in poultry. Dev Comp Immunol 24:187–200 [CrossRef]
    [Google Scholar]
  11. Enjuanes L., Smerdou C., Castilla J., Anton I. M., Torres J. M., Sola I., Golvano J., Sanchez J. M., Pintado B. 1995; Development of protection against coronavirus induced diseases. A review. Adv Exp Med Biol 380:197–211
    [Google Scholar]
  12. Finlay B. B., See R. H., Brunham R. C. 2004; Rapid response research to emerging infectious diseases: lessons from SARS. Nat Rev Microbiol 2:602–607 [CrossRef]
    [Google Scholar]
  13. Fouchier R. A. M., Kuiken T., Schutten M. & 7 other authors 2003; Aetiology: Koch's postulates fulfilled for SARS virus. Nature 423:240 [CrossRef]
    [Google Scholar]
  14. Glass W. G., Subbarao K., Murphy B., Murphy P. M. 2004; Mechanisms of host defense following severe acute respiratory syndrome-coronavirus (SARS-CoV) pulmonary infection of mice. J Immunol 173:4030–4039 [CrossRef]
    [Google Scholar]
  15. Guo J.-P., Petric M., Campbell W., McGeer P. L. 2004; SARS corona virus peptides recognized by antibodies in the sera of convalescent cases. Virology 324:251–256 [CrossRef]
    [Google Scholar]
  16. He Y., Zhou Y., Siddiqui P., Jiang S. 2004; Inactivated SARS-CoV vaccine elicits high titers of spike protein-specific antibodies that block receptor binding and virus entry. Biochem Biophys Res Commun 325:445–452 [CrossRef]
    [Google Scholar]
  17. Hitt M. M., Ng P., Graham F. L. 2005; Construction and propagation of human adenovirus vectors. In Cell Biology: a Laboratory Handbook , 3rd edn. vol 1 pp  435–443 Edited by Celis J. E. San Diego: Academic Press;
    [Google Scholar]
  18. Hogan R. J., Gao G., Rowe T. & 10 other authors 2004; Resolution of primary severe acute respiratory syndrome-associated coronavirus infection requires Stat1. J Virol 78:11416–11421 [CrossRef]
    [Google Scholar]
  19. Hollander M., Wolfe D. A. 1973 Nonparametric Statistical Methods New York: Wiley;
    [Google Scholar]
  20. Kenney R. T., Edelman R. 2003; Survey of human-use adjuvants. Expert Rev Vaccines 2:167–188 [CrossRef]
    [Google Scholar]
  21. Kim T. W., Lee J. H., Hung C.-F. & 9 other authors 2004; Generation and characterization of DNA vaccines targeting the nucleocapsid protein of severe acute respiratory syndrome coronavirus. J Virol 78:4638–4645 [CrossRef]
    [Google Scholar]
  22. Kuiken T., Fouchier R. A. M., Schutten M. & 19 other authors 2003; Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet 362:263–270 [CrossRef]
    [Google Scholar]
  23. Li W., Moore M. J., Vasilieva N. & 9 other authors 2003; Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426:450–454 [CrossRef]
    [Google Scholar]
  24. Liu X., Shi Y., Li P., Li L., Yi Y., Ma Q., Cao C. 2004; Profile of antibodies to the nucleocapsid protein of the severe acute respiratory syndrome (SARS)-associated coronavirus in probable SARS patients. Clin Diagn Lab Immunol 11:227–228
    [Google Scholar]
  25. Marra M. A., Jones S. J. M., Astell C. R. & 56 other authors 2003; The genome sequence of the SARS-associated coronavirus. Science 300:1399–1404 [CrossRef]
    [Google Scholar]
  26. Martina B. E. E., Haagmans B. L., Kuiken T., Fouchier R. A. M., Rimmelzwaan G. F., van Amerongen G., Peiris J. S. M., Lim W., Osterhaus A. D. M. E. 2003; Virology: SARS virus infection of cats and ferrets. Nature 425:915 [CrossRef]
    [Google Scholar]
  27. Matthews D. A., Cummings D., Evelegh C., Graham F. L., Prevec L. 1999; Development and use of a 293 cell line expressing lac repressor for the rescue of recombinant adenoviruses expressing high levels of rabies virus glycoprotein. J Gen Virol 80:345–353
    [Google Scholar]
  28. McAuliffe J., Vogel L., Roberts A. & 8 other authors 2004; Replication of SARS coronavirus administered into the respiratory tract of African Green, rhesus and cynomolgus monkeys. Virology 330:8–15 [CrossRef]
    [Google Scholar]
  29. Navas-Martin S., Weiss S. R. 2003; SARS: lessons learned from other coronaviruses. Viral Immunol 16:461–474 [CrossRef]
    [Google Scholar]
  30. Ng P., Parks R. J., Cummings D. T., Evelegh C. M., Graham F. L. 2000; An enhanced system for construction of adenoviral vectors by the two-plasmid rescue method. Hum Gene Ther 11:693–699 [CrossRef]
    [Google Scholar]
  31. NRC 1996 Guide for the Care and Use of Laboratory Animals Washington, DC: National Research Council;
    [Google Scholar]
  32. Olsen C. W. 1993; A review of feline infectious peritonitis virus: molecular biology, immunopathogenesis, clinical aspects, and vaccination. Vet Microbiol 36:1–37 [CrossRef]
    [Google Scholar]
  33. Pang H., Liu Y., Han X., Xu Y., Jiang F., Wu D., Kong X., Bartlam M., Rao Z. 2004; Protective humoral responses to severe acute respiratory syndrome-associated coronavirus: implications for the design of an effective protein-based vaccine. J Gen Virol 85:3109–3113 [CrossRef]
    [Google Scholar]
  34. Peiris J. S. M., Yuen K. Y., Osterhaus A. D. M. E., Stöhr K. 2003; The severe acute respiratory syndrome. N Engl J Med 349:2431–2441 [CrossRef]
    [Google Scholar]
  35. Pratelli A., Tinelli A., Decaro N., Cirone F., Elia G., Roperto S., Tempesta M., Buonavoglia C. 2003; Efficacy of an inactivated canine coronavirus vaccine in pups. New Microbiol 26:151–155
    [Google Scholar]
  36. Qu D., Zheng B., Yao X., Guan Y., Yuan Z.-H., Zhong N.-S., Lu L.-W., Xie J.-P., Wen Y.-M. 2005; Intranasal immunization with inactivated SARS-CoV (SARS-associated coronavirus) induced local and serum antibodies in mice. Vaccine 23:924–931 [CrossRef]
    [Google Scholar]
  37. Reed L. J., Muench H. 1938; A simple method of estimating fifty percent endpoints. Am J Hyg 27:493–497
    [Google Scholar]
  38. Roberts A., Vogel L., Guarner J., Hayes N., Murphy B., Zaki S., Subbarao K. 2005; Severe acute respiratory syndrome coronavirus infection of golden Syrian hamsters. J Virol 79:503–511 [CrossRef]
    [Google Scholar]
  39. Rota P. A., Oberste M. S., Monroe S. S. & 32 other authors 2003; Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300:1394–1399 [CrossRef]
    [Google Scholar]
  40. Saif L. J. 2004; Animal coronavirus vaccines: lessons for SARS. Dev Biol (Basel 119:129–140
    [Google Scholar]
  41. Sanchez-Lopez R., Nicholson R., Gesnel M. C., Matrisian L. M., Breathnach R. 1988; Structure-function relationships in the collagenase family member transin. J Biol Chem 263:11892–11899
    [Google Scholar]
  42. Schmidt N. 1989; Cell culture procedures for diagnostic virology. In Diagnostic Procedures for Viral, Rickettsial and Chlamydial Infections . , 6th edn. pp  51–100 Edited by Schmidt N., Emmons R. Washington, DC: American Public Health Association;
  43. See R. H., Roper R. L., Brunham R. C., Finlay B. B. 2005; Rapid response research – SARS coronavirus vaccines and application of processes to other emerging infectious diseases. Curr Immunol Rev 1:185–200 [CrossRef]
    [Google Scholar]
  44. Seo S. H., Wang L., Smith R., Collisson E. W. 1997; The carboxyl-terminal 120-residue polypeptide of infectious bronchitis virus nucleocapsid induces cytotoxic T lymphocytes and protects chickens from acute infection. J Virol 71:7889–7894
    [Google Scholar]
  45. Smee D. F., Huffman J. H., Morrison A. C., Barnard D. L., Sidwell R. W. 2001; Cyclopentane neuraminidase inhibitors with potent in vitro anti-influenza virus activities. Antimicrob Agents Chemother 45:743–748 [CrossRef]
    [Google Scholar]
  46. Stadler K., Roberts A., Becker S. & 8 other authors 2005; SARS vaccine protective in mice. Emerg Infect Dis 11:1312–1314 [CrossRef]
    [Google Scholar]
  47. Stohlman S. A., Kyuwa S., Polo J. M., Brady D., Lai M. M. C., Bergmann C. C. 1993; Characterization of mouse hepatitis virus-specific cytotoxic T cells derived from the central nervous system of mice infected with the JHM strain. J Virol 67:7050–7059
    [Google Scholar]
  48. Stohlman S. A., Bergmann C. C., van der Veen R. C., Hinton D. R. 1995; Mouse hepatitis virus-specific cytotoxic T lymphocytes protect from lethal infection without eliminating virus from the central nervous system. J Virol 69:684–694
    [Google Scholar]
  49. Subbarao K., McAuliffe J., Vogel L. 7 other authors 2004; Prior infection and passive transfer of neutralizing antibody prevent replication of severe acute respiratory syndrome coronavirus in the respiratory tract of mice. J Virol 78:3572–3577 [CrossRef]
    [Google Scholar]
  50. Takamura K., Matsumoto Y., Shimizu Y. 2002; Field study of bovine coronavirus vaccine enriched with hemagglutinating antigen for winter dysentery in dairy cows. Can J Vet Res 66:278–281
    [Google Scholar]
  51. Takasuka N., Fujii H., Takahashi Y. & 13 other authors 2004; A subcutaneously injected UV-inactivated SARS coronavirus vaccine elicits systemic humoral immunity in mice. Int Immunol 16:1423–1430 [CrossRef]
    [Google Scholar]
  52. Tan Y.-J., Goh P.-Y., Fielding B. C. & 9 other authors 2004; Profiles of antibody responses against severe acute respiratory syndrome coronavirus recombinant proteins and their potential use as diagnostic markers. Clin Diagn Lab Immunol 11:362–371
    [Google Scholar]
  53. Tang L., Zhu Q., Qin E. & 15 other authors 2004; Inactivated SARS-CoV vaccine prepared from whole virus induces a high level of neutralizing antibodies in BALB/c mice. DNA Cell Biol 23:391–394 [CrossRef]
    [Google Scholar]
  54. Wesseling J. G., Godeke G.-J., Schijns V. E. C. J., Prevec L., Graham F. L., Horzinek M. C., Rottier P. J. M. 1993; Mouse hepatitis virus spike and nucleocapsid proteins expressed by adenovirus vectors protect mice against a lethal infection. J Gen Virol 74:2061–2069 [CrossRef]
    [Google Scholar]
  55. Wong S. K., Li W., Moore M. J., Choe H., Farzan M. 2004; A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J Biol Chem 279:3197–3201
    [Google Scholar]
  56. Woo P. C. Y., Lau S. K. P., Wong B. H. L., Tsoi H.-W., Fung A. M. Y., Chan K.-H., Tam V. K. P., Peiris J. S. M., Yuen K.-Y. 2004; Detection of specific antibodies to severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein for serodiagnosis of SARS coronavirus pneumonia. J Clin Microbiol 42:2306–2309 [CrossRef]
    [Google Scholar]
  57. Xiao X., Chakraborti S., Dimitrov A. S., Gramatikoff K., Dimitrov D. S. 2003; The SARS-CoV S glycoprotein: expression and functional characterization. Biochem Biophys Res Commun 312:1159–1164 [CrossRef]
    [Google Scholar]
  58. Xiong S., Wang Y.-F., Zhang M.-Y. & 11 other authors 2004; Immunogenicity of SARS inactivated vaccine in BALB/c mice. Immunol Lett 95:139–143 [CrossRef]
    [Google Scholar]
  59. Yang Z.-Y., Kong W.-P., Huang Y., Roberts A., Murphy B. R., Subbarao K., Nabel G. J. 2004; A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature 428:561–564 [CrossRef]
    [Google Scholar]
  60. Zakhartchouk A. N., Liu Q., Petric M., Babiuk L. A. 2005a; Augmentation of immune responses to SARS coronavirus by a combination of DNA and whole killed virus vaccines. Vaccine 23:4385–4391 [CrossRef]
    [Google Scholar]
  61. Zakhartchouk A. N., Viswanathan S., Mahony J. B., Gauldie J., Babiuk L. A. 2005b; Severe acute respiratory syndrome coronavirus nucleocapsid protein expressed by an adenovirus vector is phosphorylated and immunogenic in mice. J Gen Virol 86:211–215 [CrossRef]
    [Google Scholar]
  62. Zhu M.-S., Pan Y., Chen H.-Q., Shen Y., Wang X.-C., Sun Y.-J., Tao K.-H. 2004; Induction of SARS-nucleoprotein-specific immune response by use of DNA vaccine. Immunol Lett 92:237–243 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81579-0
Loading
/content/journal/jgv/10.1099/vir.0.81579-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error