1887

Abstract

The herpes simplex virus type 1 (HSV-1) glycoproteins H (gH) and L (gL) form a heterodimer and efficient expression of gH at the virion or cell surface is dependent upon gL. Five carboxy-terminal deletion mutants of gL were created and their ability to interact with and mediate cell-surface expression of gH, to promote binding of gL-dependent anti-gH antibodies and to contribute to cell fusion was analysed. All of the gL mutants bound gH, but only two mutants, containing the amino-terminal 161 or 168 aa of gL, mediated cell-surface expression of gH, and only gL161 and gL168 functioned in cell fusion. The binding of gL to gH, therefore, was not sufficient to ensure gH cell-surface expression and it was not possible to separate the gH-trafficking role of gL from gL function in fusion. Co-expression of gH with any gL mutant conferred binding of the anti-gH mAbs 53S and LP11. If the acquisition of 53S and LP11 binding to gH reflects a gL-induced conformational change, such a change is not sufficient to mediate trafficking of the gH–gL heterodimer.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81563-0
2006-04-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/4/759.html?itemId=/content/journal/jgv/10.1099/vir.0.81563-0&mimeType=html&fmt=ahah

References

  1. Buckmaster, E. A., Cranage, M. P., McLean, C. S., Coombs, R. R. & Minson, A. ( 1984; ). The use of monoclonal antibodies to differentiate isolates of herpes simplex types 1 and 2 by neutralisation and reverse passive haemagglutination tests. J Med Virol 13, 193–202.[CrossRef]
    [Google Scholar]
  2. Cairns, T. M., Milne, R. S. B., Ponce-De-Leon, M., Tobin, D. K., Cohen, G. H. & Eisenberg, R. J. ( 2003; ). Structure-function analysis of herpes simplex virus type 1 gD and gH-gL: clues from gDgH chimeras. J Virol 77, 6731–6742.[CrossRef]
    [Google Scholar]
  3. Cairns, T. M., Landsburg, D. J., Whitbeck, J. C., Eisenberg, R. J. & Cohen, G. H. ( 2005; ). Contribution of cysteine residues to the structure and function of herpes simplex virus gH/gL. Virology 332, 550–562.[CrossRef]
    [Google Scholar]
  4. Dubin, G. & Jiang, H. ( 1995; ). Expression of herpes simplex virus type 1 glycoprotein L (gL) in transfected mammalian cells: evidence that gL is not independently anchored to cell membranes. J Virol 69, 4564–4568.
    [Google Scholar]
  5. Duus, K. M. & Grose, C. ( 1996; ). Multiple regulatory effects of varicella-zoster virus (VZV) gL on trafficking patterns and fusogenic properties of VZV gH. J Virol 70, 8961–8971.
    [Google Scholar]
  6. Galdiero, S., Falanga, A., Vitiello, M., Browne, H., Pedone, C. & Galdiero, M. ( 2005; ). Fusogenic domains in herpes simplex virus type 1 glycoprotein H. J Biol Chem 280, 28632–28643.[CrossRef]
    [Google Scholar]
  7. Geraghty, R. J., Jogger, C. R. & Spear, P. G. ( 2000; ). Cellular expression of alphaherpesvirus gD interferes with entry of homologous and heterologous alphaherpesviruses by blocking access to a shared gD receptor. Virology 268, 147–158.[CrossRef]
    [Google Scholar]
  8. Geraghty, R. J., Fridberg, A., Krummenacher, C., Cohen, G. H., Eisenberg, R. J. & Spear, P. G. ( 2001; ). Use of chimeric nectin-1(HveC)-related receptors to demonstrate that ability to bind alphaherpesvirus gD is not necessarily sufficient for viral entry. Virology 285, 366–375.[CrossRef]
    [Google Scholar]
  9. Gianni, T., Martelli, P. L., Casadio, R. & Campadelli-Fiume, G. ( 2005a; ). The ectodomain of herpes simplex virus glycoprotein H contains a membrane α-helix with attributes of an internal fusion peptide, positionally conserved in the Herpesviridae family. J Virol 79, 2931–2940.[CrossRef]
    [Google Scholar]
  10. Gianni, T., Menotti, L. & Campadelli-Fiume, G. ( 2005b; ). A heptad repeat in herpes simplex virus 1 gH, located downstream of the α-helix with attributes of a fusion peptide, is critical for virus entry and fusion. J Virol 79, 7042–7049.[CrossRef]
    [Google Scholar]
  11. Gompels, U. & Minson, A. ( 1986; ). The properties and sequence of glycoprotein H of herpes simplex virus type 1. Virology 153, 230–247.[CrossRef]
    [Google Scholar]
  12. Gompels, U. A. & Minson, A. C. ( 1989; ). Antigenic properties and cellular localization of herpes simplex virus glycoprotein H synthesized in a mammalian cell expression system. J Virol 63, 4744–4755.
    [Google Scholar]
  13. Gompels, U. A., Carss, A. L., Saxby, C., Hancock, D. C., Forrester, A. & Minson, A. C. ( 1991; ). Characterization and sequence analyses of antibody-selected antigenic variants of herpes simplex virus show a conformationally complex epitope on glycoprotein H. J Virol 65, 2393–2401.
    [Google Scholar]
  14. Hutchinson, L., Browne, H., Wargent, V., Davis-Poynter, N., Primorac, S., Goldsmith, K., Minson, A. C. & Johnson, D. C. ( 1992; ). A novel herpes simplex virus glycoprotein, gL, forms a complex with glycoprotein H (gH) and affects normal folding and surface expression of gH. J Virol 66, 2240–2250.
    [Google Scholar]
  15. Jones, N. A. & Geraghty, R. J. ( 2004; ). Fusion activity of lipid-anchored envelope glycoproteins of herpes simplex virus type 1. Virology 324, 213–228.[CrossRef]
    [Google Scholar]
  16. Lopper, M. & Compton, T. ( 2004; ). Coiled-coil domains in glycoproteins B and H are involved in human cytomegalovirus membrane fusion. J Virol 78, 8333–8341.[CrossRef]
    [Google Scholar]
  17. McGeoch, D. J., Cunningham, C., McIntyre, G. & Dolan, A. ( 1991; ). Comparative sequence analysis of the long repeat regions and adjoining parts of the long unique regions in the genomes of herpes simplex viruses types 1 and 2. J Gen Virol 72, 3057–3075.[CrossRef]
    [Google Scholar]
  18. Novotny, M. J., Parish, M. L. & Spear, P. G. ( 1996; ). Variability of herpes simplex virus 1 gL and anti-gL antibodies that inhibit cell fusion but not viral infectivity. Virology 221, 1–13.[CrossRef]
    [Google Scholar]
  19. Nussbaum, O., Broder, C. C. & Berger, E. A. ( 1994; ). Fusogenic mechanisms of enveloped-virus glycoproteins analyzed by a novel recombinant vaccinia virus-based assay quantitating cell fusion-dependent reporter gene activation. J Virol 68, 5411–5422.
    [Google Scholar]
  20. Oka, T., Ungar, D., Hughson, F. M. & Krieger, M. ( 2004; ). The COG and COPI complexes interact to control the abundance of GEARs, a subset of Golgi integral membrane proteins. Mol Biol Cell 15, 2423–2435.[CrossRef]
    [Google Scholar]
  21. Peng, T., Ponce de Leon, M., Novotny, M. J., Jiang, H., Lambris, J. D., Dubin, G., Spear, P. G., Cohen, G. H. & Eisenberg, R. J. ( 1998; ). Structural and antigenic analysis of a truncated form of the herpes simplex virus glycoprotein gH-gL complex. J Virol 72, 6092–6103.
    [Google Scholar]
  22. Pertel, P. E., Fridberg, A., Parish, M. L. & Spear, P. G. ( 2001; ). Cell fusion induced by herpes simplex virus glycoproteins gB, gD, and gH-gL requires a gD receptor but not necessarily heparan sulfate. Virology 279, 313–324.[CrossRef]
    [Google Scholar]
  23. Roop, C., Hutchinson, L. & Johnson, D. C. ( 1993; ). A mutant herpes simplex virus type 1 unable to express glycoprotein L cannot enter cells, and its particles lack glycoprotein H. J Virol 67, 2285–2297.
    [Google Scholar]
  24. Showalter, S. D., Zweig, M. & Hampar, B. ( 1981; ). Monoclonal antibodies to herpes simplex virus type 1 proteins, including the immediate-early protein ICP 4. Infect Immun 34, 684–692.
    [Google Scholar]
  25. Subramanian, R. P., Dunn, J. E. & Geraghty, R. J. ( 2005; ). The nectin-1α transmembrane domain, but not the cytoplasmic tail, influences cell fusion induced by HSV-1 glycoproteins. Virology 339, 176–191.[CrossRef]
    [Google Scholar]
  26. Turner, A., Bruun, B., Minson, T. & Browne, H. ( 1998; ). Glycoproteins gB, gD, and gHgL of herpes simplex virus type 1 are necessary and sufficient to mediate membrane fusion in a Cos cell transfection system. J Virol 72, 873–875.
    [Google Scholar]
  27. Ungar, D., Oka, T., Brittle, E. E., Vasile, E., Lupashin, V. V., Chatterton, J. E., Heuser, J. E., Krieger, M. & Waters, M. G. ( 2002; ). Characterization of a mammalian Golgi-localized protein complex, COG, that is required for normal Golgi morphology and function. J Cell Biol 157, 405–415.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81563-0
Loading
/content/journal/jgv/10.1099/vir.0.81563-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error