Genome of a novel circovirus of starlings, amplified by multiply primed rolling-circle amplification Free

Abstract

The genus comprises small non-enveloped viruses with a circular single-stranded DNA genome. By using PCR with degenerate primers, a novel circovirus (starling circovirus, StCV) was detected in spleen samples of wild starlings ( and ) found dead during an epidemic outbreak of septicaemic salmonellosis in northeastern Spain. Using a specific PCR, StCV was also detected in apparently healthy birds from the same population. The genome was amplified using multiply primed rolling-circle amplification and cloned. Open reading frames (ORFs) with similarities to the replication-associated protein and the capsid protein of circoviruses as well as an additional ORF encoding a protein of 106 aa were evident from the sequence. Phylogenetic analysis of circovirus genomes revealed the highest degree of similarity (67·1 %) between StCV and canary circovirus. A similar analysis of the evolutionarily conserved cytochrome gene of the circovirus host species revealed a strict co-evolution of circoviruses with their hosts; however, the circoviruses showed about a threefold higher genetic divergence than their hosts.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81561-0
2006-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/5/1189.html?itemId=/content/journal/jgv/10.1099/vir.0.81561-0&mimeType=html&fmt=ahah

References

  1. Allan G. M., Ellis J. A. 2000; Porcine circoviruses: a review. J Vet Diagn Invest 12:3–14 [CrossRef]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  3. Arnal M. C., Revilla M., Marco M. & 7 other authors 2005; Brote de salmonelosis septicémica en estorninos pintos Sturnus vulgaris . In Abstracts of the 17th Meeting of the Spanish Veterinary Pathology Society p– 106 Jarandilla de la Vera; Cáceres, Spain: 14–16 July 2005
    [Google Scholar]
  4. Bassami M. R., Berryman D., Wilcox G. E., Raidal S. R. 1998; Psittacine beak and feather disease virus nucleotide sequence analysis and its relationship to porcine circovirus, plant circoviruses, and chicken anaemia virus. Virology 249:453–459 [CrossRef]
    [Google Scholar]
  5. Chae C. 2005; A review of porcine circovirus 2-associated syndromes and diseases. Vet J 169:326–336 [CrossRef]
    [Google Scholar]
  6. Dean F. B., Nelson J. R., Giesler T. L., Lasken R. S. 2001; Rapid amplification of plasmid and phage DNA using Phi29 DNA polymerase and multiply-primed rolling circle amplification. Genome Res 11:1095–1099 [CrossRef]
    [Google Scholar]
  7. de Kloet E., de Kloet S. R. 2004; Analysis of the beak and feather disease viral genome indicates the existence of several genotypes which have a complex psittacine host specificity. Arch Virol 149:2393–2412 [CrossRef]
    [Google Scholar]
  8. Dekonenko A., Yakimenko V., Ivanov A., Morozov V., Nikitin P., Khasanova S., Dzagurova T., Tkachenko E., Schmaljohn C. 2003; Genetic similarity of Puumala viruses found in Finland and western Siberia and of the mitochondrial DNA of their rodent hosts suggests a common evolutionary origin. Infect Genet Evol 3:245–257 [CrossRef]
    [Google Scholar]
  9. Esteban J. A., Salas M., Blanco L. 1993; Fidelity of Phi29 DNA polymerase. Comparison between protein-primed initiation and DNA polymerization. J Biol Chem 268:2719–2726
    [Google Scholar]
  10. Griffiths C. S., Barrowclough G. F., Groth J. G., Mertz L. 2004; Phylogeny of the Falconidae (Aves): a comparison of the efficacy of morphological, mitochondrial, and nuclear data. Mol Phylogenet Evol 32:101–109 [CrossRef]
    [Google Scholar]
  11. Hattermann K., Schmitt C., Soike D., Mankertz A. 2003; Cloning and sequencing of duck circovirus (DuCV). Arch Virol 148:2471–2480 [CrossRef]
    [Google Scholar]
  12. Heath L., Martin D. P., Warburton L., Perrin M., Horsfield W., Kingsley C., Rybicki E. P., Williamson A. L. 2004; Evidence of unique genotypes of beak and feather disease virus in southern Africa. J Virol 78:9277–9284 [CrossRef]
    [Google Scholar]
  13. Hughes A. L., Friedman R. 2000; Evolutionary diversification of protein-coding genes of hantaviruses. Mol Biol Evol 17:1558–1568 [CrossRef]
    [Google Scholar]
  14. Johne R., Raue R., Grund C., Kaleta E. F., Müller H. 2004; Recombinant expression of a truncated capsid protein of beak and feather disease virus and its application in serologic tests. Avian Pathol 33:328–336
    [Google Scholar]
  15. Kocher T. D., Thomas W. K., Meyer A., Edwards S. V., Paabo S., Villablanca F. X., Wilson A. C. 1989; Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci U S A 86:6196–6200 [CrossRef]
    [Google Scholar]
  16. Mankertz A., Hattermann K., Ehlers B., Soike D. 2000; Cloning and sequencing of columbid circovirus (CoCV), a new circovirus from pigeons. Arch Virol 145:2469–2479 [CrossRef]
    [Google Scholar]
  17. Niagro F. D., Forsthoefel A. N., Lawther R. P., Kamalanathan L., Ritchie B. W., Latimer K. S., Lukert P. D. 1998; Beak and feather disease virus and porcine circovirus genomes: intermediates between the geminiviruses and plant circoviruses. Arch Virol 143:1723–1744 [CrossRef]
    [Google Scholar]
  18. Niel C., Diniz-Mendes L., Devalle S. 2005; Rolling-circle amplification of Torque teno virus (TTV) complete genomes from human and swine sera and identification of a novel swine TTV genogroup. J Gen Virol 86:1343–1347 [CrossRef]
    [Google Scholar]
  19. Paez J. G., Lin M., Beroukhim R. & 10 other authors 2004; Genome coverage and sequence fidelity of ϕ 29 polymerase-based multiple strand displacement whole genome amplification. Nucleic Acids Res 32:e71 [CrossRef]
    [Google Scholar]
  20. Phenix K. V., Weston J. H., Ypelaar I., Lavazza A., Smyth J. A., Todd D., Wilcox G. E., Raidal S. R. 2001; Nucleotide sequence analysis of a novel circovirus of canaries and its relationship to other members of the genus Circovirus of the family Circoviridae . J Gen Virol 82:2805–2809
    [Google Scholar]
  21. Raue R., Johne R., Crosta L., Bürkle M., Gerlach H., Müller H. 2004; Nucleotide sequence analysis of a C1 gene fragment of psittacine beak and feather disease virus amplified by real-time PCR indicates a possible existence of pathotypes. Avian Pathol 33:41–50 [CrossRef]
    [Google Scholar]
  22. Raue R., Schmidt V., Freick M., Reinhardt B., Johne R., Kamphausen L., Kaleta E. F., Müller H., Krautwald-Junghanns M.-E. 2005; A disease complex associated with pigeon circovirus infection, young pigeon disease syndrome. Avian Pathol 34:418–425 [CrossRef]
    [Google Scholar]
  23. Rector A., Bossart G. D., Ghim S. J., Sundberg J. P., Jenson A. B., Van Ranst M. 2004a; Characterization of a novel close-to-root papillomavirus from a Florida manatee by using multiply primed rolling-circle amplification: trichechus manatus latirostris papillomavirus type 1. J Virol 78:12698–12702 [CrossRef]
    [Google Scholar]
  24. Rector A., Tachezy R., Van Ranst M. 2004b; A sequence-independent strategy for detection and cloning of circular DNA virus genomes by using multiply primed rolling-circle amplification. J Virol 78:4993–4998 [CrossRef]
    [Google Scholar]
  25. Rector A., Tachezy R., Van Doorslaer K., MacNamara T., Burk R. D., Sundberg J. P., Van Ranst M. 2005; Isolation and cloning of a papillomavirus from a North American porcupine by using multiply primed rolling-circle amplification: the Erethizon dorsatum papillomavirus type 1. Virology 331:449–456 [CrossRef]
    [Google Scholar]
  26. Soike D., Albrecht K., Hattermann K., Schmitt C., Mankertz A. 2004; Novel circovirus in mulard ducks with developmental and feathering disorders. Vet Rec 154:792–793 [CrossRef]
    [Google Scholar]
  27. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  28. Todd D. 2004; Avian circovirus diseases: lessons for the study of PMWS. Vet Microbiol 98:169–174 [CrossRef]
    [Google Scholar]
  29. Todd D., Weston J., Ball N. W., Borghmanns B. J., Smyth J. A., Gelmini L., Lavazza A. 2001a; Nucleotide sequence-based identification of a novel circovirus of canaries. Avian Pathol 30:321–325 [CrossRef]
    [Google Scholar]
  30. Todd D., Weston J. H., Soike D., Smyth J. A. 2001b; Genome sequence determinations and analyses of novel circoviruses from goose and pigeon. Virology 286:354–362 [CrossRef]
    [Google Scholar]
  31. Todd D., Bendinelli M., Biagini P. & 8 other authors 2005; Circoviridae . In Virus Taxonomy, VIIIth Report of the International Committee for the Taxonomy of Viruses . pp  327–334 Edited by Fauquet C. M., Mayo M. A., Maniloff J., Desselberger U., Ball L. A. London: Elsevier/Academic Press;
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81561-0
Loading
/content/journal/jgv/10.1099/vir.0.81561-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed