Phylogeny, recombination and expression of porcine endogenous retrovirus 2 nucleotide sequences Free

Abstract

Endogenous retroviral sequences in the pig genome represent a potential infectious risk in xenotransplantation. Porcine endogenous retrovirus (PERV) sequences described to date have been classified into several families. The known infectious, human-tropic PERVs have been assigned to the PERV 1 subfamilies A, B and C. High copy numbers and full-length clones have also been observed for an additional family, designated PERV 2. The aim of this study was to examine the PERV 2 family by analysis of retroviral / gene sequences. The proviral load was observed to be similar among various pig breeds. Although clones harbouring an open reading frame in the examined region were found, analysis of published large PERV 2 clones revealed multiple deleterious mutations in each of the retroviral genes. Various recombination events between 2 genomes were revealed. In contrast to PERV 1, phylogenetic analyses did not distinguish defined subfamilies, but indicated the independent evolution of the proviruses after a single event of retroviral amplification. Expression analysis showed large PERV 2 transcripts and variable transcription in several tissues. Analysis of the two published 2 gene sequences observed the partial lack of the receptor-binding domain. Overall, this study indicated the low infectious potential for PERV 2.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81552-0
2006-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/4/977.html?itemId=/content/journal/jgv/10.1099/vir.0.81552-0&mimeType=html&fmt=ahah

References

  1. Andersson A.-C., Venables P. J. W., Tönjes R. R., Scherer J., Eriksson L., Larsson E. 2002; Developmental expression of HERV-R (ERV3) and HERV-K in human tissue. Virology 297:220–225 [CrossRef]
    [Google Scholar]
  2. Bateman A., Coin L., Durbin R. & 10 other authors 2004; The Pfam protein families database. Nucleic Acids Res 32:D138–D141 [CrossRef]
    [Google Scholar]
  3. Beckmann J. P., Brem G., Eigler F. W., Günzburg W., Hammer C., Müller-Ruchholtz W., Neumann-Held E. M., Schreiber H.-L. 2000 Xenotransplantation von Zellen, Geweben oder Organen Berlin: Springer (in German;
    [Google Scholar]
  4. Bénit L., Dessen P., Heidmann T. 2001; Identification, phylogeny, and evolution of retroviral elements based on their envelope genes. J Virol 75:11709–11719 [CrossRef]
    [Google Scholar]
  5. Blond J.-L., Lavillette D., Cheynet V., Bouton O., Oriol G., Chapel-Fernandes S., Mandrand B., Mallet F., Cosset F.-L. 2000; An envelope glycoprotein of the human endogenous retrovirus HERV-W is expressed in the human placenta and fuses cells expressing the type D mammalian retrovirus receptor. J Virol 74:3321–3329 [CrossRef]
    [Google Scholar]
  6. de Parseval N., Lazar V., Casella J.-F., Benit L., Heidmann T. 2003; Survey of human genes of retroviral origin: identification and transcriptome of the genes with coding capacity for complete envelope proteins. J Virol 77:10414–10422 [CrossRef]
    [Google Scholar]
  7. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  8. Huder J. B., Böni J., Hatt J.-M., Soldati G., Lutz H., Schüpbach J. 2002; Identification and characterization of two closely related unclassifiable endogenous retroviruses in pythons ( Python molurus and Python curtus ). J Virol 76:7607–7615 [CrossRef]
    [Google Scholar]
  9. Jeanmougin F., Thompson J. D., Gouy M., Higgins D. G., Gibson T. J. 1998; Multiple sequence alignment with Clustal X. Trends Biochem Sci 23:403–405 [CrossRef]
    [Google Scholar]
  10. Klymiuk N., Aigner B. 2005; Reliable classification and recombination analysis of porcine endogenous retroviruses. Virus Genes 30:357–362 [CrossRef]
    [Google Scholar]
  11. Klymiuk N., Müller M., Brem G., Aigner B. 2002; Characterization of porcine endogenous retrovirus γ pro - pol nucleotide sequences. J Virol 76:11738–11743 [CrossRef]
    [Google Scholar]
  12. Klymiuk N., Müller M., Brem G., Aigner B. 2003a; Recombination analysis of human-tropic porcine endogenous retroviruses. J Gen Virol 84:2729–2734 [CrossRef]
    [Google Scholar]
  13. Klymiuk N., Müller M., Brem G., Aigner B. 2003b; Characterization of endogenous retroviruses in sheep. J Virol 77:11268–11273 [CrossRef]
    [Google Scholar]
  14. Lee J.-H., Webb G. C., Allen R. D. M., Moran C. 2002; Characterizing and mapping porcine endogenous retroviruses in Westran pigs. J Virol 76:5548–5556 [CrossRef]
    [Google Scholar]
  15. Magre S., Takeuchi Y., Bartosch B. 2003; Xenotransplantation and pig endogenous retroviruses. Rev Med Virol 13:311–329 [CrossRef]
    [Google Scholar]
  16. Mang R., Maas J., Chen X., Goudsmit J., van der Kuyl A. C. 2001; Identification of a novel type C porcine endogenous retrovirus: evidence that copy number of endogenous retroviruses increases during host inbreeding. J Gen Virol 82:1829–1834
    [Google Scholar]
  17. Marchler-Bauer A., Anderson J. B., Cherukuri P. F. & 21 other authors 2005; CDD: a Conserved Domain Database for protein classification. Nucleic Acids Res 33:D192–D196 [CrossRef]
    [Google Scholar]
  18. Mi S., Lee X., Li X.-P. & 9 other authors 2000; Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403:785–789 [CrossRef]
    [Google Scholar]
  19. Mikkelsen J. G., Pedersen F. S. 2000; Genetic reassortment and patch repair by recombination in retroviruses. J Biomed Sci 7:77–99 [CrossRef]
    [Google Scholar]
  20. Negroni M., Buc H. 2001; Mechanisms of retroviral recombination. Annu Rev Genet 35:275–302 [CrossRef]
    [Google Scholar]
  21. Oldmixon B. A., Wood J. C., Ericsson T. A., Wilson C. A., White-Scharf M. E., Andersson G., Greenstein J. L., Schuurman H.-J., Patience C. 2002; Porcine endogenous retrovirus transmission characteristics of an inbred herd of miniature swine. J Virol 76:3045–3048 [CrossRef]
    [Google Scholar]
  22. Patience C., Switzer W. M., Takeuchi Y., Griffiths D. J., Goward M. E., Heneine W., Stoye J. P., Weiss R. A. 2001; Multiple groups of novel retroviral genomes in pigs and related species. J Virol 75:2771–2775 [CrossRef]
    [Google Scholar]
  23. Rothenberg S. M., Olsen M. N., Laurent L. C., Crowley R. A., Brown P. O. 2001; Comprehensive mutational analysis of the Moloney murine leukemia virus envelope protein. J Virol 75:11851–11862 [CrossRef]
    [Google Scholar]
  24. Tönjes R. R., Niebert M. 2003; Relative age of proviral porcine endogenous retrovirus sequences in Sus scrofa based on the molecular clock hypothesis. J Virol 77:12363–12368 [CrossRef]
    [Google Scholar]
  25. Tristem M. 2000; Identification and characterization of novel human endogenous retrovirus families by phylogenetic screening of the human genome mapping project database. J Virol 74:3715–3730 [CrossRef]
    [Google Scholar]
  26. van Regenmortel M. H. V., Fauquet C. M., Bishop D. H. L. , 8 other editors. 2000; Virus Taxonomy: the Classification and Nomenclature of Viruses . Seventh Report of the International Committee on Taxonomy of Viruses San Diego: Academic Press;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81552-0
Loading
/content/journal/jgv/10.1099/vir.0.81552-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed