1887

Abstract

The internal ribosome entry site (IRES) elements from porcine enterovirus 8 and simian virus 2, two members of a proposed new genus within the family , were characterized. These IRES elements, in common with the porcine teschovirus 1 IRES, were found to be related functionally and structurally to the IRES element from , a member of the family . Partial secondary structure predictions were derived and functional assays demonstrated that these IRES elements continued to be active when eIF4G was cleaved and when the activity of eIF4A was blocked.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81546-0
2006-04-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/4/927.html?itemId=/content/journal/jgv/10.1099/vir.0.81546-0&mimeType=html&fmt=ahah

References

  1. Ali, I. K., McKendrick, L., Morley, S. J. & Jackson, R. J. ( 2001a; ). Activity of the hepatitis A virus IRES requires association between the cap-binding translation initiation factor (eIF4E) and eIF4G. J Virol 75, 7854–7863.[CrossRef]
    [Google Scholar]
  2. Ali, I. K., McKendrick, L., Morley, S. J. & Jackson, R. J. ( 2001b; ). Truncated initiation factor eIF4G lacking an eIF4E binding site can support capped mRNA translation. EMBO J 20, 4233–4242.[CrossRef]
    [Google Scholar]
  3. Belsham, G. J. & Jackson, R. J. ( 2000; ). Translation initiation on picornavirus RNA. In Translational Control of Gene Expression, monograph 39, pp. 869–900. Edited by N. Sonenberg, J. W. B. Hershey & M. B. Mathews. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  4. Bordeleau, M.-E., Mori, A., Oberer, M., Lindqvist, L., Chard, L. S., Higa, T., Belsham, G. J., Wagner, G., Tanaka, J. & Pelletier, J. ( 2006; ). Selective interference of eukaryotic translation initiation factor 4A RNA binding by hippuristanol. Nat Chem Biol (in press).
    [Google Scholar]
  5. Borman, A. M. & Kean, K. M. ( 1997; ). Intact eukaryotic initiation factor 4G is required for hepatitis A virus internal initiation of translation. Virology 237, 129–136.[CrossRef]
    [Google Scholar]
  6. Chard, L. S., Kaku, Y., Jones, B., Nayak, A. & Belsham, G. J. ( 2006; ). Functional analyses of RNA structures shared between the internal ribosome entry sites of hepatitis C virus and a picornavirus, porcine teschovirus-1 talfan. J Virol 80, 1271–1279.[CrossRef]
    [Google Scholar]
  7. Fletcher, S. P. & Jackson, R. J. ( 2002; ). Pestivirus internal ribosome entry site (IRES) structure and function: elements in the 5′ untranslated region important for IRES function. J Virol 76, 5024–5033.[CrossRef]
    [Google Scholar]
  8. Fletcher, S. P., Ali, I. K., Kaminski, A., Digard, P. & Jackson, R. J. ( 2002; ). The influence of viral coding sequences on pestivirus IRES activity reveals further parallels with translation initiation in prokaryotes. RNA 8, 1558–1571.
    [Google Scholar]
  9. Fuerst, T. R., Niles, E. G., Studier, F. W. & Moss, B. ( 1986; ). Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A 83, 8122–8126.[CrossRef]
    [Google Scholar]
  10. Gorman, C. M., Moffat, L. F. & Howard, B. H. ( 1982; ). Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol 2, 1044–1051.
    [Google Scholar]
  11. Honda, M., Brown, E. A. & Lemon, S. M. ( 1996; ). Stability of a stem–loop involving the initiator AUG controls the efficiency of internal initiation of translation on hepatitis C virus RNA. RNA 2, 955–968.
    [Google Scholar]
  12. Kaku, Y., Sarai, A. & Murakami, Y. ( 2001; ). Genetic reclassification of porcine enteroviruses. J Gen Virol 82, 417–424.
    [Google Scholar]
  13. Kaku, Y., Chard, L. S., Inoue, T. & Belsham, G. J. ( 2002; ). Unique characteristics of a picornavirus internal ribosome entry site from the porcine teschovirus-1 Talfan. J Virol 76, 11721–11728.[CrossRef]
    [Google Scholar]
  14. Kieft, J. S., Zhou, K., Jubin, R. & Doudna, J. A. ( 2001; ). Mechanism of ribosome recruitment by hepatitis C IRES RNA. RNA 7, 194–206.[CrossRef]
    [Google Scholar]
  15. Krumbholz, A., Dauber, M., Henke, A., Birch-Hirschfeld, E., Knowles, N. J., Stelzner, A. & Zell, R. ( 2002; ). Sequencing of porcine enterovirus groups II and III reveals unique features of both virus groups. J Virol 76, 5813–5821.[CrossRef]
    [Google Scholar]
  16. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  17. Lukavsky, P. J., Otto, G. A., Lancaster, A. M., Sarnow, P. & Puglisi, J. D. ( 2000; ). Structures of two RNA domains essential for hepatitis C virus internal ribosome entry site function. Nat Struct Biol 7, 1105–1110.[CrossRef]
    [Google Scholar]
  18. Oberste, M. S., Maher, K. & Pallansch, M. A. ( 2003; ). Genomic evidence that simian virus 2 and six other simian picornaviruses represent a new genus in Picornaviridae. Virology 314, 283–293.[CrossRef]
    [Google Scholar]
  19. Pause, A., Méthot, N., Svitkin, Y., Merrick, W. C. & Sonenberg, N. ( 1994; ). Dominant negative mutants of mammalian translation initiation factor eIF-4A define a critical role for eIF-4F in cap-dependent and cap-independent initiation of translation. EMBO J 13, 1205–1215.
    [Google Scholar]
  20. Pestova, T. V., Shatsky, I. N., Fletcher, S. P., Jackson, R. J. & Hellen, C. U. T. ( 1998; ). A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitis C and classical swine fever virus RNAs. Genes Dev 12, 67–83.[CrossRef]
    [Google Scholar]
  21. Pisarev, A. V., Chard, L. S., Kaku, Y., Johns, H. L., Shatsky, I. N. & Belsham, G. J. ( 2004; ). Functional and structural similarities between the internal ribosome entry sites of hepatitis C virus and porcine teschovirus, a picornavirus. J Virol 78, 4487–4497.[CrossRef]
    [Google Scholar]
  22. Reynolds, J. E., Kaminski, A., Kettinen, H. J., Grace, K., Clarke, B. E., Carroll, A. R., Rowlands, D. J. & Jackson, R. J. ( 1995; ). Unique features of internal initiation of hepatitis C virus RNA translation. EMBO J 14, 6010–6020.
    [Google Scholar]
  23. Rijnbrand, R., Bredenbeek, P. J., Hassnoot, P. C., Kieft, J. S., Spaan, W. J. M. & Lemon, S. M. ( 2001; ). The influence of downstream protein-coding sequence on internal ribosome entry on hepatitis C virus and other flavivirus RNAs. RNA 7, 585–597.[CrossRef]
    [Google Scholar]
  24. Roberts, L. O., Seamons, R. A. & Belsham, G. J. ( 1998; ). Recognition of picornavirus internal ribosome entry sites within cells: influence of cellular and viral proteins. RNA 4, 520–529.[CrossRef]
    [Google Scholar]
  25. Sakoda, Y., Ross-Smith, N. Inoue T. & Belsham, G. J. ( 2001; ). An attenuating mutation in the 2A protease of swine vesicular disease virus, a picornavirus, regulates cap- and internal ribosome entry site-dependent protein synthesis. J Virol 75, 10643–10650.[CrossRef]
    [Google Scholar]
  26. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  27. Sarnow, P. ( 2003; ). Viral internal ribosome entry site elements: novel ribosome–RNA complexes and roles in viral pathogenesis. J Virol 77, 2801–2806.[CrossRef]
    [Google Scholar]
  28. Svitkin, Y. V., Pause, A., Haghighat, A., Pyronnet, S., Witherell, G., Belsham, G. J. & Sonenberg, N. ( 2001; ). The requirement for eukaryotic initiation factor 4A (eIF4A) in translation is in direct proportion to the degree of mRNA 5′ secondary structure. RNA 7, 382–394.[CrossRef]
    [Google Scholar]
  29. van der Velden, A., Kaminski, A., Jackson, R. J. & Belsham, G. J. ( 1995; ). Defective point mutants of the encephalomyocarditis virus internal ribosome entry site can be complemented in trans. Virology 214, 82–90.[CrossRef]
    [Google Scholar]
  30. Wang, C., Le, S. Y., Ali, N. & Siddiqui, A. ( 1995; ). An RNA pseudoknot is an essential structural element of the internal ribosome entry site located within the hepatitis C virus 5′ noncoding region. RNA 1, 526–537.
    [Google Scholar]
  31. Zuker, M. ( 2003; ). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31, 3406–3415.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81546-0
Loading
/content/journal/jgv/10.1099/vir.0.81546-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error