1887

Abstract

The C-terminal sequence of the cytoplasmic tail (CT) of influenza B haemagglutinin (BHA) consists of strictly conserved, hydrophobic amino acids, and the endmost C-terminal amino acid of the CT is Leu. To elucidate the role of this amino acid in the fusion activity of BHA (B/Kanagawa/73), site-specific mutant HAs were created by replacing Leu at this position with Arg, Lys, Ser, Try, Val or Ile or by the deletion of Leu altogether. All mutants were expressed at the cell surface, bound to red blood cells, were cleaved properly into two subunits and could be acylated like the wild-type (wt) HA. The membrane-fusion ability of these mutants was examined with a lipid (R18) and aqueous (calcein) dye-transfer assay and quantified with a syncytium-formation assay. All mutant HAs showed no measurable effect on lipid mixing or fusion-pore formation. However, mutant HAs with a hydrophobic value of the C-terminal amino acid lower than that of Leu had a reduced ability to form syncytia, whereas mutants with a more hydrophobic amino acid (Val or Ile) promoted fusion to the extent of the wt HA. On the other hand, the mutant HA with the deletion of Leu supported full fusion. These results demonstrate that Leu at the endmost portion of the C terminus of the BHA-CT is not essential for BHA-mediated fusion, but that the hydrophobicity of the single amino acid at this position plays an important role in syncytium formation.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81528-0
2006-06-01
2020-01-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/6/1669.html?itemId=/content/journal/jgv/10.1099/vir.0.81528-0&mimeType=html&fmt=ahah

References

  1. Armstrong, R. T., Kushnir, A. S. & White, J. M. ( 2000; ). The transmembrane domain of influenza hemagglutinin exhibits a stringent length requirement to support the hemifusion to fusion transition. J Cell Biol 151, 425–437.[CrossRef]
    [Google Scholar]
  2. Borrego-Diaz, E., Peeples, M. E., Markosyan, R. M., Melikyan, G. B. & Cohen, F. S. ( 2003; ). Completion of trimeric hairpin formation of influenza virus hemagglutinin promotes fusion pore opening and enlargement. Virology 316, 234–244.[CrossRef]
    [Google Scholar]
  3. Bullough, P. A., Hughson, F. M., Skehel, J. J. & Wiley, D. C. ( 1994; ). Structure of influenza haemagglutinin at the pH of membrane fusion. Nature 371, 37–43.[CrossRef]
    [Google Scholar]
  4. Carr, C. M. & Kim, P. S. ( 1993; ). A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell 73, 823–832.[CrossRef]
    [Google Scholar]
  5. Chen, J., Skehel, J. J. & Willey, D. C. ( 1999; ). N- and C-terminal residues combine in the fusion-pH influenza hemagglutinin HA2 subunit to form an N cap that terminates the triple-stranded coiled coil. Proc Natl Acad Sci U S A 96, 8967–8972.[CrossRef]
    [Google Scholar]
  6. Chen, B. J., Takeda, M. & Lamb, R. A. ( 2005; ). Influenza virus hemagglutinin (H3 subtype) requires palmitoylation of its cytoplasmic tail for assembly: M1 proteins of two subtypes differ in their ability to support assembly. J Virol 79, 13673–13684.[CrossRef]
    [Google Scholar]
  7. Creighton, T. E. ( 1984; ). Proteins: Structural and Molecular Principles, p. 242. New York: W. E. Freeman and Co.
  8. Eisenberg, D. ( 1984; ). Three-dimensional structure of membrane and surface proteins. Annu Rev Biochem 53, 595–623.[CrossRef]
    [Google Scholar]
  9. Fischer, C., Schroth-Diez, B., Herrmann, A., Garten, W. & Klenk, H.-D. ( 1998; ). Acylation of the influenza hemagglutinin modulates fusion activity. Virology 248, 284–294.[CrossRef]
    [Google Scholar]
  10. Gruenke, J. A., Armstrong, R. T., Newcomb, W. W., Brown, J. C. & White, J. M. ( 2002; ). New insights into the spring-loaded conformational change of influenza virus hemagglutinin. J Virol 76, 4456–4466.[CrossRef]
    [Google Scholar]
  11. Horton, R. M. & Pease, L. R. ( 1991; ). Recombination and mutagenesis of DNA sequences using PCR. In Directed Mutagenesis: a Practical Approach, pp. 217–247. Edited by M. J. McPherson. Oxford: Oxford University Press.
  12. Kawaoka, Y., Yamnikova, S., Chambers, T. M., Lvov, D. K. & Webster, R. G. ( 1990; ). Molecular characterization of a new hemagglutinin, subtype H14, of influenza A virus. Virology 179, 759–767.[CrossRef]
    [Google Scholar]
  13. Kemble, G. W., Henis, Y. I. & White, J. M. ( 1993; ). GPI- and transmembrane-anchored influenza hemagglutinin differ in structure and receptor binding activity. J Cell Biol 122, 1253–1265.[CrossRef]
    [Google Scholar]
  14. Kemble, G. W., Danieli, T. & White, J. M. ( 1994; ). Lipid-anchored influenza hemagglutinin promotes hemifusion, not complete fusion. Cell 76, 383–391.[CrossRef]
    [Google Scholar]
  15. Kozerski, C., Ponimaskin, E., Schroth-Diez, B., Schmidt, M. F. G. & Herrmann, A. ( 2000; ). Modification of the cytoplasmic domain of influenza virus hemagglutinin affects enlargement of the fusion pore. J Virol 74, 7529–7537.[CrossRef]
    [Google Scholar]
  16. Krystal, M., Elliott, R. M., Benz, E. W., Jr, Young, J. F. & Palese, P. ( 1982; ). Evolution of influenza A and B viruses: conservation of structural features in the hemagglutinin genes. Proc Natl Acad Sci U S A 79, 4800–4804.[CrossRef]
    [Google Scholar]
  17. Luo, C., Nobusawa, E. & Nakajima, K. ( 1999; ). An analysis of the role of neuraminidase in the receptor-binding activity of influenza B virus: the inhibitory effect of Zanamivir on haemadsorption. J Gen Virol 80, 2969–2976.
    [Google Scholar]
  18. Luo, C., Nobusawa, E. & Nakajima, K. ( 2002; ). Analysis of the desialidation process of the haemagglutinin protein of influenza B virus: the host-dependent desialidation step. J Gen Virol 83, 1729–1734.
    [Google Scholar]
  19. Markosyan, R. M., Cohen, F. S. & Melikyan, G. B. ( 2000; ). The lipid-anchored ectodomain of influenza virus hemagglutinin (GPI-HA) is capable of inducing nonenlarging fusion pores. Mol Biol Cell 11, 1143–1152.[CrossRef]
    [Google Scholar]
  20. Melikyan, G. B., White, J. M. & Cohen, F. S. ( 1995; ). GPI-anchored influenza hemagglutinin induces hemifusion to both red blood cell and planar bilayer membranes. J Cell Biol 131, 679–691.[CrossRef]
    [Google Scholar]
  21. Melikyan, G. B., Lin, S., Roth, M. G. & Cohen, F. S. ( 1999; ). Amino acid sequence requirements of the transmembrane and cytoplasmic domains of influenza virus hemagglutinin for viable membrane fusion. Mol Biol Cell 10, 1821–1836.[CrossRef]
    [Google Scholar]
  22. Melikyan, G. B., Markosyan, R. M., Roth, M. G. & Cohen, F. S. ( 2000; ). A point mutation in the transmembrane domain of the hemagglutinin of influenza virus stabilizes a hemifusion intermediate that can transit to fusion. Mol Biol Cell 11, 3765–3775.[CrossRef]
    [Google Scholar]
  23. Morris, S. J., Sarkar, D. P., White, J. M. & Blumenthal, R. ( 1989; ). Kinetics of pH-dependent fusion between 3T3 fibroblasts expressing influenza hemagglutinin and red blood cells: measurement by dequenching of fluorescence. J Biol Chem 264, 3972–3978.
    [Google Scholar]
  24. Naeve, C. W. & Williams, D. ( 1990; ). Fatty acids on the A/Japan/305/57 influenza virus hemagglutinin have a role in membrane fusion. EMBO J 9, 3857–3866.
    [Google Scholar]
  25. Nobusawa, E., Aoyama, T., Kato, H., Suzuki, Y., Tateno, Y. & Nakajima, K. ( 1991; ). Comparison of complete amino acid sequences and receptor-binding properties among 13 serotypes of hemagglutinins of influenza A viruses. Virology 182, 475–485.[CrossRef]
    [Google Scholar]
  26. Nobusawa, E., Hishida, R., Murata, M., Kawasaki, K., Ohnishi, S. & Nakajima, K. ( 1995; ). The role of acidic residues in the “fusion segment” of influenza A virus hemagglutinin in low-pH-dependent membrane fusion. Arch Virol 140, 865–875.[CrossRef]
    [Google Scholar]
  27. Ohuchi, M., Fischer, C., Ohuchi, R., Herwig, A. & Klenk, H.-D. ( 1998; ). Elongation of the cytoplasmic tail interferes with the fusion activity of influenza virus hemagglutinin. J Virol 72, 3554–3559.
    [Google Scholar]
  28. Park, H. E., Gruenke, J. A. & White, J. M. ( 2003; ). Leash in the groove mechanism of membrane fusion. Nat Struct Biol 10, 1048–1053.[CrossRef]
    [Google Scholar]
  29. Qiao, H., Pelletier, S. L., Hoffman, L., Hacker, J., Armstrong, R. T. & White, J. M. ( 1998; ). Specific single or double proline substitutions in the “spring-loaded” coiled-coil region of the influenza hemagglutinin impair or abolish membrane fusion activity. J Cell Biol 141, 1335–1347.[CrossRef]
    [Google Scholar]
  30. Röhm, C., Zhou, N., Süss, J., Mackenzie, J. & Webster, R. G. ( 1996; ). Characterization of a novel influenza hemagglutinin, H15: criteria for determination of influenza A subtypes. Virology 217, 508–516.[CrossRef]
    [Google Scholar]
  31. Sakai, T., Ohuchi, R. & Ohuchi, M. ( 2002; ). Fatty acids on the A/USSR/77 influenza virus hemagglutinin facilitate the transition from hemifusion to fusion pore formation. J Virol 76, 4603–4611.[CrossRef]
    [Google Scholar]
  32. Schroth-Diez, B., Ponimaskin, E., Reverey, H., Schmidt, M. F. G. & Herrmann, A. ( 1998; ). Fusion activity of transmembrane and cytoplasmic domain chimeras of the influenza virus glycoprotein hemagglutinin. J Virol 72, 133–141.
    [Google Scholar]
  33. Simpson, D. A. & Lamb, R. A. ( 1992; ). Alterations to influenza virus hemagglutinin cytoplasmic tail modulate virus infectivity. J Virol 66, 790–803.
    [Google Scholar]
  34. Skehel, J. J. & Wiley, D. C. ( 2000; ). Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem 69, 531–569.[CrossRef]
    [Google Scholar]
  35. Spruce, A. E., Iwata, A., White, J. M. & Almers, W. ( 1989; ). Patch clamp studies of single cell-fusion events mediated by a viral fusion protein. Nature 342, 555–558.[CrossRef]
    [Google Scholar]
  36. Ujike, M., Nakajima, K. & Nobusawa, E. ( 2004; ). Influence of acylation sites of influenza B virus hemagglutinin on fusion pore formation and dilation. J Virol 78, 11536–11543.[CrossRef]
    [Google Scholar]
  37. Wagner, R., Herwig, A., Azzouz, N. & Klenk, H. D. ( 2005; ). Acylation-mediated membrane anchoring of avian influenza virus hemagglutinin is essential for fusion pore formation and virus infectivity. J Virol 79, 6449–6458.[CrossRef]
    [Google Scholar]
  38. Zhang, J., Leser, G. P., Pekosz, A. & Lamb, R. A. ( 2000a; ). The cytoplasmic tails of the influenza virus spike glycoproteins are required for normal genome packaging. Virology 269, 325–334.[CrossRef]
    [Google Scholar]
  39. Zhang, J., Pekosz, A. & Lamb, R. A. ( 2000b; ). Influenza virus assembly and lipid raft microdomains: a role for the cytoplasmic tails of the spike glycoproteins. J Virol 74, 4634–4644.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81528-0
Loading
/content/journal/jgv/10.1099/vir.0.81528-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error