Full text loading...
Abstract
Hepatitis C virus (HCV) infections are a major public-health concern. New antiviral drugs are needed urgently to complement and improve the efficacy of current chemotherapies. The morphogenesis of HCV represents an interesting, and still unexploited, novel molecular target. α-Glucosidase inhibitors derived from the glucose analogue deoxynojirimycin (DNJ) inhibit viral morphogenesis in cellulo via perturbation of the N-glycosylation pathway and hence the misfolding of viral glycoproteins that depend on certain N-glycans for correct folding. Due to the heavy N-glycosylation of HCV glycoproteins, it was hypothesized that such inhibitors would also affect HCV morphogenesis. To study the effect of α-glucosidase inhibitors on viral morphogenesis and binding properties, HCV virus-like particles (VLPs) were produced by using baculovirus loaded with HCV structural-protein genes. Here, it is demonstrated that, in the presence of these α-glucosidase inhibitors, viral glycoproteins synthesized and retained in the endoplasmic reticulum (i) contain unprocessed, triglucosylated N-glycans, (ii) are impaired in their interaction with calnexin and (iii) are at least partially misfolded. Moreover, it is shown that, although the production of VLPs is not affected by α-glucosidase inhibitors, these VLPs contain unprocessed, triglucosylated N-glycans and potentially misfolded glycoproteins. Finally, it is demonstrated that VLPs produced in the presence of α-glucosidase inhibitors have impaired binding properties to hepatoma cells. The inhibitors of morphogenesis studied here target steps of the HCV viral cycle that may prevent or delay viral resistance. These α-glucosidase inhibitors may prove to be useful molecules to fight HCV infection in combination protocols.
- Received:
- Accepted:
- Published Online: