1887

Abstract

The genetic stability of attenuated (HIV-1) variants harbouring mutations (Gly or Lys) of Asn17, the protease-cleavage site of the proximal zinc finger of the nucleocapsid protein, was studied. All possible codons for the Gly mutants were tested as starting sequences. Long-term replication assays revealed that the mutants were unstable; mutations of Gly17 to Arg, Ala, Ser and Cys, as well as a Lys17Asn reversion, were observed. Replication kinetic assays in H9 cells revealed that the replication of Ala, Ser and Arg mutants was improved substantially compared with the Gly variant; the infectivity of Ala17 and Ser17 viruses was equal to, and that of Arg17 was almost equal to, the infectivity of the wild-type virus. Kinetic analysis of the cleavage of oligopeptides representing the corresponding nucleocapsid-cleavage sites revealed that all mutations improved cleavability, in good agreement with the previously proposed role of nucleocapsid cleavage in HIV-1 replication.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81473-0
2006-04-01
2021-03-05
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/4/961.html?itemId=/content/journal/jgv/10.1099/vir.0.81473-0&mimeType=html&fmt=ahah

References

  1. Amarasinghe G. K., De Guzman R. N., Turner R. B., Chancellor K. J., Wu Z. R., Summers M. F. 2000; NMR structure of the HIV-1 nucleocapsid protein bound to stem–loop SL2 of the Ψ-RNA packaging signal. Implications for genome recognition. J Mol Biol 301:491–511 [CrossRef]
    [Google Scholar]
  2. Baboonian C., Dalgleish A., Bountiff L., Gross J., Oroszlan S., Rickett G., Smith-Burchnell C., Troke P., Merson J. 1991; HIV-1 proteinase is required for synthesis of pro-viral DNA. Biochem Biophys Res Commun 179:17–24 [CrossRef]
    [Google Scholar]
  3. Bampi C., Jacquenet S., Lener D., Décimo D., Darlix J.-L. 2004; The chaperoning and assistance roles of the HIV-1 nucleocapsid protein in proviral DNA synthesis and maintenance. Int J Biochem Cell Biol 36:1668–1686 [CrossRef]
    [Google Scholar]
  4. Coffin J. M. 1995; HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy. Science 267:483–489 [CrossRef]
    [Google Scholar]
  5. De Guzman R. N., Wu Z. R., Stalling C. C., Pappalardo L., Borer P. N., Summers M. F. 1998; Structure of the HIV-1 nucleocapsid protein bound to the SL3 Ψ-RNA recognition element. Science 279:384–388 [CrossRef]
    [Google Scholar]
  6. Dorfman T., Luban J., Goff S. P., Haseltine W. A., Göttlinger H. G. 1993; Mapping of functionally important residues of a cysteine-histidine box in the human immunodeficiency virus type 1 nucleocapsid protein. J Virol 67:6159–6169
    [Google Scholar]
  7. Goto T., Nakano T., Kohno T., Morimatsu S., Morita C., Hong W., Kiso Y., Nakai M., Sano K. 2001; Targets of a protease inhibitor, KNI-272, in HIV-1-infected cells. J Med Virol 63:203–209 [CrossRef]
    [Google Scholar]
  8. Hsu M., Wainberg M. A. 2000; Interactions between human immunodeficiency virus type 1 reverse transcriptase, tRNA primer, and nucleocapsid protein during reverse transcription. J Hum Virol 3:16–26
    [Google Scholar]
  9. Huang M., Maynard A., Turpin J. A., Graham L., Janini G. M., Covell D. G., Rice W. G. 1998; Anti-HIV agents that selectively target retroviral nucleocapsid protein zinc fingers without affecting cellular zinc finger proteins. J Med Chem 41:1371–1381 [CrossRef]
    [Google Scholar]
  10. Jacobsen H., Ahlborn-Laake L., Gugel R., Mous J. 1992; Progression of early steps of human immunodeficiency virus type 1 replication in the presence of an inhibitor of viral protease. J Virol 66:5087–5091
    [Google Scholar]
  11. Kaplan A. H., Manchester M., Smith T., Yang Y. L., Swanstrom R. 1996; Conditional human immunodeficiency virus type 1 protease mutants show no role for the viral protease early in virus replication. J Virol 70:5840–5844
    [Google Scholar]
  12. Martínez M. A., Sala M., Vartanian J.-P., Wain-Hobson S. 1995; Reverse transcriptase and substrate dependence of the RNA hypermutagenesis reaction. Nucleic Acids Res 23:2573–2578 [CrossRef]
    [Google Scholar]
  13. Musah R. A. 2004; The HIV-1 nucleocapsid zinc finger protein as a target of antiretroviral therapy. Curr Top Med Chem 4:1605–1622 [CrossRef]
    [Google Scholar]
  14. Nagy K., Young M., Baboonian C., Merson J., Whittle P., Oroszlan S. 1994; Antiviral activity of human immunodeficiency virus type 1 protease inhibitors in a single cycle of infection: evidence for a role of protease in the early phase. J Virol 68:757–765
    [Google Scholar]
  15. Panther L. A., Coombs R. W., Aung S. A., dela Rosa C., Gretch D., Corey L. 1999; Unintegrated HIV-1 circular 2-LTR proviral DNA as a marker of recently infected cells: relative effect of recombinant CD4, zidovudine, and saquinavir in vitro. J Med Virol 58:165–173 [CrossRef]
    [Google Scholar]
  16. Popovic M., Sarngadharan M. G., Read E., Gallo R. C. 1984; Detection, isolation, and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS. Science 224:497–500 [CrossRef]
    [Google Scholar]
  17. Rein A., Henderson L. E., Levin J. G. 1998; Nucleic-acid-chaperone activity of retroviral nucleocapsid proteins: significance for viral replication. Trends Biochem Sci 23:297–301 [CrossRef]
    [Google Scholar]
  18. Roberts M. M., Oroszlan S. 1989; The preparation and biochemical characterization of intact capsids of equine infectious anemia virus. Biochem Biophys Res Commun 160:486–494 [CrossRef]
    [Google Scholar]
  19. Roberts M. M., Oroszlan S. 1990; The action of retroviral protease in various phases of virus replication. In Retroviral Proteases: Control of Maturation and Morphogenesis pp  131–139 Edited by Pearl L. H. London: Macmillan Press;
    [Google Scholar]
  20. Roberts M. M., Copeland T. D., Oroszlan S. 1991a; In situ processing of a retroviral nucleocapsid protein by the viral proteinase. Protein Eng 4:695–700 [CrossRef]
    [Google Scholar]
  21. Roberts M. M., Volker E., Copeland T. D., Nagashima K., Cassell M. B., Briggs C. J., Oroszlan S. 1991b; Regulated proteolytic processing within mature retroviral capsids. In Advances in Molecular Biology and Targeted Treatment for AIDS pp  273–280 Edited by Kumar A. New York: Plenum;
    [Google Scholar]
  22. Tözsér J., Oroszlan S. 2003; Proteolytic events of HIV-1 replication as targets for therapeutic intervention. Curr Pharm Des 9:1803–1815 [CrossRef]
    [Google Scholar]
  23. Tözsér J., Friedman D., Weber I. T., Blaha I., Oroszlan S. 1993; Studies on the substrate specificity of the proteinase of equine infectious anemia virus using oligopeptide substrates. Biochemistry 32:3347–3353 [CrossRef]
    [Google Scholar]
  24. Tözsér J., Shulenin S., Louis J. M., Copeland T. D., Oroszlan S. 2004; In vitro processing of HIV-1 nucleocapsid protein by the viral proteinase: effects of amino acid substitutions at the scissile bond in the proximal zinc finger sequence. Biochemistry 43:4304–4312 [CrossRef]
    [Google Scholar]
  25. Uchida H., Maeda Y., Mitsuya H. 1997; HIV-1 protease does not play a critical role in the early stages of HIV-1 infection. Antiviral Res 36:107–113 [CrossRef]
    [Google Scholar]
  26. Vartanian J.-P., Meyerhans A., Åsjö B., Wain-Hobson S. 1991; Selection, recombination, and G→A hypermutation of human immunodeficiency virus type 1 genomes. J Virol 65:1779–1788
    [Google Scholar]
  27. Venaud S., Yahi N., Fehrentz J. L., Guettari N., Nisato D., Hirsch I., Chermann J. C. 1992; Inhibition of HIV by an anti-HIV protease synthetic peptide blocks an early step of viral replication. Res Virol 143:311–319 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81473-0
Loading
/content/journal/jgv/10.1099/vir.0.81473-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error