1887

Abstract

The selection pressure acting along the entire genome sequence of H5N1 avian influenza viruses isolated from several bird species and humans infected in the 1997 and 2004 outbreaks, and on the HA1 genes from H5N1 viruses isolated during the entire study period, in eastern Asia was evaluated. According to maximum-likelihood analysis, viral genes appeared to be, in both epidemics, under strong purifying selection, with only the PB2, HA and NS1 genes under positive selection. Specific codons under positive selection were detected by using codon-based substitution models. Positive-selection analysis performed on single-codon sites might be helpful in clarifying the driving force of avian and human influenza virus evolution and in selecting specific targets for vaccines and antiviral drugs.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81397-0
2006-04-01
2019-11-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/4/955.html?itemId=/content/journal/jgv/10.1099/vir.0.81397-0&mimeType=html&fmt=ahah

References

  1. Anisimova, M., Bielawski, J. P. & Yang, Z. ( 2001; ). Accuracy and power of the likelihood ratio test in detecting adaptive molecular evolution. Mol Biol Evol 18, 1585–1592.[CrossRef]
    [Google Scholar]
  2. Anisimova, M., Bielawski, J. P. & Yang, Z. ( 2002; ). Accuracy and power of Bayes prediction of amino acid sites under positive selection. Mol Biol Evol 19, 950–958.[CrossRef]
    [Google Scholar]
  3. Butler, D. ( 2005; ). Flu bulletins. Nature 435, 391.
    [Google Scholar]
  4. Claas, E. C. J., Osterhaus, A. D. M. E., van Beek, R., De Jong, J. C., Rimmelzwaan, G. F., Senne, D. A., Krauss, S., Shortridge, K. F. & Webster, R. G. ( 1998; ). Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet 351, 472–477.[CrossRef]
    [Google Scholar]
  5. Felsenstein, J. ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef]
    [Google Scholar]
  6. Gambaryan, A., Yamnikova, S., Lvov, D., Tuzikov, A., Chinarev, A., Pazynina, G., Webster, R., Matrosovich, M. & Bovin, N. ( 2005; ). Receptor specificity of influenza viruses from birds and mammals: new data on involvement of the inner fragments of the carbohydrate chain. Virology 334, 276–283.[CrossRef]
    [Google Scholar]
  7. Guan, Y., Peiris, J. S. M., Lipatov, A. S., Ellis, T. M., Dyrting, K. C., Krauss, S., Zhang, L. J., Webster, R. G. & Shortridge, K. F. ( 2002; ). Emergence of multiple genotypes of H5N1 avian influenza viruses in Hong Kong SAR. Proc Natl Acad Sci U S A 99, 8950–8955.[CrossRef]
    [Google Scholar]
  8. Hasegawa, M., Kishino, H. & Yano, T. ( 1985; ). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22, 160–174.[CrossRef]
    [Google Scholar]
  9. Ilyushina, N. A., Rudneva, I. A., Gambaryan, A. S., Tuzikov, A. B. & Bovin, N. V. ( 2004; ). Receptor specificity of H5 influenza virus escape mutants. Virus Res 100, 237–241.[CrossRef]
    [Google Scholar]
  10. Katz, J. M., Lu, X., Tumpey, T. M., Smith, C. B., Shaw, M. W. & Subbarao, K. ( 2000; ). Molecular correlates of influenza A H5N1 virus pathogenesis in mice. J Virol 74, 10807–10810.[CrossRef]
    [Google Scholar]
  11. Kaverin, N. V., Rudneva, I. A., Ilyushina, N. A. & 7 other authors ( 2002; ). Structure of antigenic sites on the haemagglutinin molecule of H5 avian influenza virus and phenotypic variation of escape mutants. J Gen Virol 83, 2497–2505.
    [Google Scholar]
  12. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  13. Kimura, M. ( 1981; ). Estimation of evolutionary distances between homologous nucleotide sequences. Proc Natl Acad Sci U S A 78, 454–458.[CrossRef]
    [Google Scholar]
  14. Lee, C.-W., Senne, D. A. & Suarez, D. L. ( 2004; ). Effect of vaccine use in the evolution of Mexican lineage H5N2 avian influenza virus. J Virol 78, 8372–8381.[CrossRef]
    [Google Scholar]
  15. Li, K. S., Guan, Y., Wang, J. & 19 other authors ( 2004; ). Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature 430, 209–213.[CrossRef]
    [Google Scholar]
  16. Liem, N. T., Lim, W. & World Health Organization International Avian Influenza Investigation Team, Vietnam ( 2005; ). Lack of H5N1 avian influenza transmission to hospital employees, Hanoi, 2004. Emerg Infect Dis 11, 210–215.[CrossRef]
    [Google Scholar]
  17. Macken, C., Lu, H., Goodman, J. & Boykin, L. ( 2001; ). The value of a database in surveillance and vaccine selection. In Options for the Control of Influenza IV, pp. 103–106. Edited by A. D. M. E. Osterhaus, N. Cox & A. W. Hampson. Amsterdam: Elsevier Science.
  18. Nielsen, R. & Yang, Z. ( 1998; ). Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 148, 929–936.
    [Google Scholar]
  19. Posada, D. & Crandall, K. A. ( 1998; ). modeltest: testing the model of DNA substitution. Bioinformatics 9, 817–818.
    [Google Scholar]
  20. Seo, S. H., Hoffmann, E. & Webster, R. G. ( 2002; ). Lethal H5N1 influenza viruses escape host anti-viral cytokine responses. Nat Med 8, 950–954.[CrossRef]
    [Google Scholar]
  21. Swofford, D. L. ( 1999; ). paup* 4.0: phylogenetic analysis using parsimony (*and other methods), version 4.0b10. Sunderland, MA: Sinauer Associates Inc.
  22. Swofford, D. L. & Sullivan, J. ( 2003; ). Phylogeny inference based on parsimony and other methods using paup*. In The Phylogenetic Handbook: a Practical Approach to DNA and Protein Phylogeny, pp. 160–206. Edited by M. Salemi & A.-M. Vandamme. Cambridge: Cambridge University Press.
  23. Tamura, K. & Nei, M. ( 1993; ). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10, 512–526.
    [Google Scholar]
  24. Ungchusak, K., Auewarakul, P., Dowell, S. F. & 13 other authors ( 2005; ). Probable person-to-person transmission of avian influenza A (H5N1). N Engl J Med 352, 333–340.[CrossRef]
    [Google Scholar]
  25. Webby, R., Hoffmann, E. & Webster, R. ( 2004; ). Molecular constraints to interspecies transmission of viral pathogens. Nat Med 10, S77–S81.[CrossRef]
    [Google Scholar]
  26. WHO ( 2005a; ). Cumulative number of confirmed human cases of avian influenza A/(H5N1) reported to WHO. http://www.who.int/csr/disease/avian_influenza/country/cases_table_2005_06_28/en/index.html
  27. WHO ( 2005b; ). Avian influenza: assessing the pandemic threat. http://www.who.int/csr/disease/influenza/WHO_CDS_2005_29/en/
  28. Yang, Z. ( 1997; ). paml: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13, 555–556.
    [Google Scholar]
  29. Yang, Z., Nielsen, R., Goldman, N. & Krabbe Pedersen, A.-M. ( 2000; ). Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155, 431–449.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81397-0
Loading
/content/journal/jgv/10.1099/vir.0.81397-0
Loading

Data & Media loading...

Supplements

GenBank accession numbers of sequences used in the analysis [ Excel file] (54 KB)

EXCEL

Phylogenetic trees of the HA1 gene from 1997 (Supplementary Fig. S1) and 2004 (Supplementary Fig. S2) [ Single PDF file] (262 KB)

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error