1887

Abstract

The protease (PR) of (MLV) was expressed in , purified to homogeneity and characterized by using various assay methods, including HPLC-based, photometric and fluorometric activity measurements. The specificity of the bacterially expressed PR was similar to that of virion-extracted PR. Compared with human immunodeficiency virus type 1 (HIV-1) PR, the pH optimum of the MLV enzyme was higher. The specificity of the MLV PR was further compared with that of HIV-1 PR by using various oligopeptides representing naturally occurring cleavage sites in MLV and HIV-1, as well as by using bacterially expressed proteins having part of the MLV Gag. Inhibitors designed against HIV-1 PR were also active on MLV PR, although all of the tested ones were substantially less potent on this enzyme than on HIV-1 PR. Nevertheless, amprenavir, the most potent inhibitor against MLV PR, was also able to block Gag processing in MLV-infected cells. These results indicate that, in spite of the similar function in the life cycle of virus infection, the two PRs are only distantly related in their specificity.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81382-0
2006-05-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/5/1321.html?itemId=/content/journal/jgv/10.1099/vir.0.81382-0&mimeType=html&fmt=ahah

References

  1. Bagossi, P., Kádas, J., Miklóssy, G., Boross, P., Weber, I. T. & Tözsér, J. ( 2004; ). Development of a microtiter plate fluorescent assay for inhibition studies on the HTLV-1 and HIV-1 proteinases. J Virol Methods 119, 87–93.[CrossRef]
    [Google Scholar]
  2. Barbaro, G., Scozzafava, A., Mastrolorenzo, A. & Supuran, C. T. ( 2005; ). Highly active antiretroviral therapy: current state of the art, new agents and their pharmacological interactions useful for improving therapeutic outcome. Curr Pharm Des 11, 1805–1843.[CrossRef]
    [Google Scholar]
  3. Black, P. L., Downs, M. B., Lewis, M. G., Ussery, M. A., Dreyer, G. B., Petteway, S. R., Jr & Lambert, D. M. ( 1993; ). Antiretroviral activities of protease inhibitors against murine leukemia virus and simian immunodeficiency virus in tissue culture. Antimicrob Agents Chemother 37, 71–77.[CrossRef]
    [Google Scholar]
  4. Black, P. L., Ussery, M. A., Barney, S. & 7 other authors ( 1996; ). Effects of SKF 108922, an HIV-1 protease inhibitor, on retrovirus replication in mice. Antiviral Res 29, 175–186.[CrossRef]
    [Google Scholar]
  5. Boross, P., Bagossi, P., Copeland, T. D., Oroszlan, S., Louis, J. M. & Tözsér, J. ( 1999; ). Effect of substrate residues on the P2′ preference of retroviral proteinases. Eur J Biochem 264, 921–929.[CrossRef]
    [Google Scholar]
  6. Brunelle, M.-N., Brakier-Gingras, L. & Lemay, G. ( 2003; ). Replacement of murine leukemia virus readthrough mechanism by human immunodeficiency virus frameshift allows synthesis of viral proteins and virus replication. J Virol 77, 3345–3350.[CrossRef]
    [Google Scholar]
  7. Bu, M., Oroszlan, S. & Luftig, R. B. ( 1989; ). Inhibition of bacterially expressed HIV protease activity determined by an in vitro cleavage assay with MuLV Pr65gag. AIDS Res Hum Retroviruses 5, 259–268.[CrossRef]
    [Google Scholar]
  8. Campbell, S., Oshima, M., Mirro, J., Nagashima, K. & Rein, A. ( 2002; ). Reversal by dithiothreitol treatment of the block in murine leukemia virus maturation induced by disulfide cross-linking. J Virol 76, 10050–10055.[CrossRef]
    [Google Scholar]
  9. Cannon, K., Qin, L., Schumann, G. & Boeke, J. D. ( 1998; ). Moloney murine leukemia virus protease expressed in bacteria is enzymatically active. Arch Virol 143, 381–388.[CrossRef]
    [Google Scholar]
  10. Crawford, S. & Goff, S. P. ( 1985; ). A deletion mutation in the 5′ part of the pol gene of Moloney murine leukemia virus blocks proteolytic processing of the gag and pol polyproteins. J Virol 53, 899–907.
    [Google Scholar]
  11. Erickson-Viitanen, S., Manfredi, J., Viitanen, P., Tribe, D. E., Tritch, R., Hutchison, C. A., III, Loeb, D. D. & Swanstrom, R. ( 1989; ). Cleavage of HIV-1 gag polyprotein synthesized in vitro: sequential cleavage by the viral protease. AIDS Res Hum Retroviruses 5, 577–591.[CrossRef]
    [Google Scholar]
  12. Fehér, A., Weber, I. T., Bagossi, P. & 7 other authors ( 2002; ). Effect of sequence polymorphism and drug resistance on two HIV-1 Gag processing sites. Eur J Biochem 269, 4114–4120.[CrossRef]
    [Google Scholar]
  13. Fehér, A., Boross, P., Sperka, T., Oroszlan, S. & Tözsér, J. ( 2004; ). Expression of the murine leukemia virus protease in fusion with maltose-binding protein in Escherichia coli. Protein Expr Purif 35, 62–68.[CrossRef]
    [Google Scholar]
  14. Gorelick, R. J., Henderson, L. E., Hanser, J. P. & Rein, A. ( 1988; ). Point mutants of Moloney murine leukemia virus that fail to package viral RNA: evidence for specific RNA recognition by a “zinc finger-like” protein sequence. Proc Natl Acad Sci U S A 85, 8420–8424.[CrossRef]
    [Google Scholar]
  15. Hyland, L. J., Tomaszek, T. A., Jr & Meek, T. D. ( 1991; ). Human immunodeficiency virus-1 protease. 2. Use of pH rate studies and solvent kinetic isotope effects to elucidate details of chemical mechanism. Biochemistry 30, 8454–8463.[CrossRef]
    [Google Scholar]
  16. Ido, E., Han, H.-P., Kezdy, F. J. & Tang, J. ( 1991; ). Kinetic studies of human immunodeficiency virus type 1 protease and its active-site hydrogen bond mutant A28S. J Biol Chem 266, 24359–24366.
    [Google Scholar]
  17. Imamichi, T. ( 2004; ). Action of anti-HIV drugs and resistance: reverse transcriptase inhibitors and protease inhibitors. Curr Pharm Des 10, 4039–4053.[CrossRef]
    [Google Scholar]
  18. Katoh, I., Yoshinaka, Y., Rein, A., Shibuya, M., Odaka, T. & Oroszlan, S. ( 1985; ). Murine leukemia virus maturation: protease region required for conversion from “immature” to “mature” core form and for virus infectivity. Virology 145, 280–292.[CrossRef]
    [Google Scholar]
  19. Kiernan, R. E. & Freed, E. O. ( 1998; ). Cleavage of the murine leukemia virus transmembrane Env protein by human immunodeficiency virus type 1 protease: transdominant inhibition by matrix mutations. J Virol 72, 9621–9627.
    [Google Scholar]
  20. Kohl, N. E., Diehl, R. E., Rands, E., Davis, L. J., Hanobik, M. G., Wolanski, B. & Dixon, R. A. F. ( 1991; ). Expression of active human immunodeficiency virus type 1 protease by noninfectious chimeric virus particles. J Virol 65, 3007–3014.
    [Google Scholar]
  21. Kotler, M., Danho, W., Katz, R. A., Leis, J. & Skalka, A. M. ( 1989; ). Avian retroviral protease and cellular aspartic proteases are distinguished by activities on peptide substrates. J Biol Chem 264, 3428–3435.
    [Google Scholar]
  22. Lai, M. H., Tang, J., Wroblewski, V. & 7 other authors ( 1993; ). Impeded progression of Friend disease in mice by an inhibitor of retroviral proteases. J Acquir Immune Defic Syndr 6, 24–31.
    [Google Scholar]
  23. Luban, J. & Goff, S. P. ( 1991; ). Binding of human immunodeficiency virus type 1 (HIV-1) RNA to recombinant HIV-1 gag polyprotein. J Virol 65, 3203–3212.
    [Google Scholar]
  24. Menéndez-Arias, L., Young, M. & Oroszlan, S. ( 1992; ). Purification and characterization of the mouse mammary tumor virus protease expressed in Escherichia coli. J Biol Chem 267, 24134–24139.
    [Google Scholar]
  25. Menéndez-Arias, L., Gotte, D. & Oroszlan, S. ( 1993; ). Moloney murine leukemia virus protease: bacterial expression and characterization of the purified enzyme. Virology 196, 557–563.[CrossRef]
    [Google Scholar]
  26. Menéndez-Arias, L., Weber, I. T., Soss, J., Harrison, R. W., Gotte, D. & Oroszlan, S. ( 1994; ). Kinetic and modeling studies of subsites S4-S3′ of Moloney murine leukemia virus protease. J Biol Chem 269, 16795–16801.
    [Google Scholar]
  27. Menéndez-Arias, L., Tözsér, J. & Oroszlan, S. ( 2004; ). Moloney murine leukemia virus retropepsin. In Handbook of Proteolytic Enzymes, 2nd edn, pp. 176–178. Edited by A. J. Barrett, N. D. Rawlings & J. F. Woessner. London: Elsevier.
  28. Naso, R. B., Karshin, W. L., Wu, Y. H. & Arlinghaus, R. B. ( 1979; ). Characterization of 40,000- and 25,000-dalton intermediate precursors to Rauscher murine leukemia virus gag gene products. J Virol 32, 187–198.
    [Google Scholar]
  29. Oroszlan, S. & Luftig, R. B. ( 1990; ). Retroviral proteinases. Curr Top Microbiol Immunol 157, 153–185.
    [Google Scholar]
  30. Oshima, M., Muriaux, D., Mirro, J., Nagashima, K., Dryden, K., Yeager, M. & Rein, A. ( 2004; ). Effects of blocking individual maturation cleavages in murine leukemia virus Gag. J Virol 78, 1411–1420.[CrossRef]
    [Google Scholar]
  31. Pettit, S. C., Simsic, J., Loeb, D. D., Everitt, L., Hutchinson, C. A., III & Swandtrom, R. ( 1991; ). Analysis of retroviral protease cleavage sites reveals two types of cleavage sites and the structural requirements of the P1 amino acid. J Biol Chem 266, 14539–14547.
    [Google Scholar]
  32. Polgár, L., Szeltner, Z. & Boros, I. ( 1994; ). Substrate-dependent mechanisms in the catalysis of human immunodeficiency virus protease. Biochemistry 33, 9351–9357.[CrossRef]
    [Google Scholar]
  33. Powell, S. K., Artlip, M., Kaloss, M., Brazinski, S., Lyons, R., McGarrity, G. J. & Otto, E. ( 1999; ). Efficacy of antiretroviral agents against murine replication-competent retrovirus infection in human cells. J Virol 73, 8813–8816.
    [Google Scholar]
  34. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  35. Schechter, I. & Berger, A. ( 1967; ). On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun 27, 157–162.[CrossRef]
    [Google Scholar]
  36. Shehu-Xhilaga, M., Crowe, S. M. & Mak, J. ( 2001; ). Maintenance of the Gag/Gag-Pol ratio is important for human immunodeficiency virus type 1 RNA dimerization and viral infectivity. J Virol 75, 1834–1841.[CrossRef]
    [Google Scholar]
  37. Thomas, C. E., Ehrhardt, A. & Kay, M. A. ( 2003; ). Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 4, 346–358.[CrossRef]
    [Google Scholar]
  38. Tözsér, J., Bláha, I., Copeland, T. D., Wondrak, E. M. & Oroszlan, S. ( 1991; ). Comparison of the HIV-1 and HIV-2 proteinases using oligopeptide substrates representing cleavage sites in Gag and Gag-Pol polyproteins. FEBS Lett 281, 77–80.[CrossRef]
    [Google Scholar]
  39. Tözsér, J., Weber, I. T., Gustchina, A., Bláha, I., Copeland, T. D., Louis, J. M. & Oroszlan, S. ( 1992; ). Kinetic and modeling studies of S3-S3′ subsites of HIV proteinases. Biochemistry 31, 4793–4800.[CrossRef]
    [Google Scholar]
  40. Tözsér, J., Friedman, D., Weber, I. T., Blaha, I. & Oroszlan, S. ( 1993; ). Studies on the substrate specificity of the proteinase of equine infectious anemia virus using oligopeptide substrates. Biochemistry 32, 3347–3353.[CrossRef]
    [Google Scholar]
  41. Tözsér, J., Bagossi, P., Weber, I. T., Copeland, T. D. & Oroszlan, S. ( 1996; ). Comparative studies on the substrate specificity of avian myeloblastosis virus proteinase and lentiviral proteinases. J Biol Chem 271, 6781–6788.[CrossRef]
    [Google Scholar]
  42. Weber, I. T., Wu, J., Adomat, J., Harrison, R. W., Kimmel, A. R., Wondrak, E. M. & Louis, J. M. ( 1997; ). Crystallographic analysis of human immunodeficiency virus 1 protease with an analog of the conserved CA-p2 substrate – interactions with frequently occurring glutamic acid residue at P2′ position of substrates. Eur J Biochem 249, 523–530.[CrossRef]
    [Google Scholar]
  43. Williams, J. W. & Morrison, J. F. ( 1979; ). The kinetics of reversible tight-binding inhibition. Methods Enzymol 63, 437–467.
    [Google Scholar]
  44. Wondrak, E. M., Louis, J. M. & Oroszlan, S. ( 1991; ). The effect of salt on the Michaelis Menten constant of the HIV-1 protease correlates with the Hofmeister series. FEBS Lett 280, 344–346.[CrossRef]
    [Google Scholar]
  45. Yoshinaka, Y. & Luftig, R. B. ( 1982; ). p65 of Gazdar murine sarcoma viruses contains antigenic determinants from all four of the murine leukemia virus (MuLV) gag polypeptides (p15, p12, p30, and p10) and can be cleaved in vitro by the MuLV proteolytic activity. Virology 118, 380–388.[CrossRef]
    [Google Scholar]
  46. Yoshinaka, Y., Katoh, I., Copeland, T. D. & Oroszlan, S. ( 1985; ). Murine leukemia virus protease is encoded by the gag–pol gene and is synthesized through suppression of an amber termination codon. Proc Natl Acad Sci U S A 82, 1618–1622.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81382-0
Loading
/content/journal/jgv/10.1099/vir.0.81382-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error