1887

Abstract

Transient expression of Ebola virus (EBOV) glycoprotein GP causes downregulation of surface proteins, cell rounding and detachment, a phenomenon believed to play a central role in the pathogenicity of the virus. In this study, evidence that moderate expression of GP does not result in such morphological changes was provided. It was shown that GP continuously produced in 293T cells from the Kunjin virus replicon was correctly processed and transported to the plasma membrane without affecting the surface expression of 1 and 5 integrins and major histocompatibility complex I molecules. The level of GP expression in Kunjin replicon GP-expressing cells was similar to that observed in cells infected with EBOV early in infection and lower than that produced in cells transfected with plasmid DNA, phCMV-GP, expressing GP from a strong promoter. Importantly, transient transfection of Kunjin replicon GP-expressing cells with GP-coding plasmid DNA resulted in overexpression of GP, which lead to the downregulation of surface molecules and massive rounding and detachment of transfected cells. Here, it was also demonstrated that cell rounding and downregulation of the surface markers are the late events in EBOV infection, whereas synthesis and massive release of virus particles occur at early steps and do not cause significant cytotoxic effects. These findings indicate that the synthesis of EBOV GP in virus-infected cells is controlled well by several mechanisms that do not allow GP overexpression and hence the early appearance of its cytotoxic properties.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81361-0
2006-05-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/5/1247.html?itemId=/content/journal/jgv/10.1099/vir.0.81361-0&mimeType=html&fmt=ahah

References

  1. Bray, M. & Geisbert, T. W. ( 2005; ). Ebola virus: the role of macrophages and dendritic cells in the pathogenesis of Ebola hemorrhagic fever. Int J Biochem Cell Biol 37, 1560–1566.[CrossRef]
    [Google Scholar]
  2. Chan, S. Y., Ma, M. C. & Goldsmith, M. A. ( 2000a; ). Differential induction of cellular detachment by envelope glycoproteins of Marburg and Ebola (Zaire) viruses. J Gen Virol 81, 2155–2159.
    [Google Scholar]
  3. Chan, S. Y., Speck, R. F., Ma, M. C. & Goldsmith, M. A. ( 2000b; ). Distinct mechanisms of entry by envelope glycoproteins of Marburg and Ebola (Zaire) viruses. J Virol 74, 4933–4937.[CrossRef]
    [Google Scholar]
  4. Dolnik, O., Volchkova, V., Garten, W., Carbonnelle, C., Becker, S., Kahnt, J., Stroher, U., Klenk, H. D. & Volchkov, V. ( 2004; ). Ectodomain shedding of the glycoprotein GP of Ebola virus. EMBO J 23, 2175–2184.[CrossRef]
    [Google Scholar]
  5. Geisbert, T. W. & Jahrling, P. B. ( 1995; ). Differentiation of filoviruses by electron microscopy. Virus Res 39, 129–150.[CrossRef]
    [Google Scholar]
  6. Geisbert, T. W. & Jahrling, P. B. ( 2003; ). Towards a vaccine against Ebola virus. Expert Rev Vaccines 2, 777–789.[CrossRef]
    [Google Scholar]
  7. Geisbert, T. W., Hensley, L. E., Jahrling, P. B. & 7 other authors ( 2003a; ). Treatment of Ebola virus infection with a recombinant inhibitor of factor VIIa/tissue factor: a study in rhesus monkeys. Lancet 362, 1953–1958.[CrossRef]
    [Google Scholar]
  8. Geisbert, T. W., Young, H. A., Jahrling, P. B., Davis, K. J., Kagan, E. & Hensley, L. E. ( 2003b; ). Mechanisms underlying coagulation abnormalities in Ebola hemorrhagic fever: overexpression of tissue factor in primate monocytes/macrophages is a key event. J Infect Dis 188, 1618–1629.[CrossRef]
    [Google Scholar]
  9. Geisbert, T. W., Young, H. A., Jahrling, P. B., Davis, K. J., Larsen, T., Kagan, E. & Hensley, L. E. ( 2003c; ). Pathogenesis of Ebola hemorrhagic fever in primate models: evidence that hemorrhage is not a direct effect of virus-induced cytolysis of endothelial cells. Am J Pathol 163, 2371–2382.[CrossRef]
    [Google Scholar]
  10. Gibb, T. R., Norwood, D. A., Jr, Woollen, N. & Henchal, E. A. ( 2002; ). Viral replication and host gene expression in alveolar macrophages infected with Ebola virus (Zaire strain). Clin Diagn Lab Immunol 9, 19–27.
    [Google Scholar]
  11. Gupta, M., Mahanty, S., Ahmed, R. & Rollin, P. E. ( 2001; ). Monocyte-derived human macrophages and peripheral blood mononuclear cells infected with Ebola virus secrete MIP-1α and TNF-α and inhibit poly-IC-induced IFN-α in vitro. Virology 284, 20–25.[CrossRef]
    [Google Scholar]
  12. Harcourt, B. H., Sanchez, A. & Offermann, M. K. ( 1999; ). Ebola virus selectively inhibits responses to interferons, but not to interleukin-1β, in endothelial cells. J Virol 73, 3491–3496.
    [Google Scholar]
  13. Ito, H., Watanabe, S., Sanchez, A., Whitt, M. A. & Kawaoka, Y. ( 1999; ). Mutational analysis of the putative fusion domain of Ebola virus glycoprotein. J Virol 73, 8907–8912.
    [Google Scholar]
  14. Jasenosky, L. D., Neumann, G., Lukashevich, I. & Kawaoka, Y. ( 2001; ). Ebola virus VP40-induced particle formation and association with the lipid bilayer. J Virol 75, 5205–5214.[CrossRef]
    [Google Scholar]
  15. Jeffers, S. A., Sanders, D. A. & Sanchez, A. ( 2002; ). Covalent modifications of the ebola virus glycoprotein. J Virol 76, 12463–12472.[CrossRef]
    [Google Scholar]
  16. Khromykh, A. A. & Westaway, E. G. ( 1997; ). Subgenomic replicons of the flavivirus Kunjin: construction and applications. J Virol 71, 1497–1505.
    [Google Scholar]
  17. Mahanty, S. & Bray, M. ( 2004; ). Pathogenesis of filoviral haemorrhagic fevers. Lancet Infect Dis 4, 487–498.[CrossRef]
    [Google Scholar]
  18. Maruyama, T., Rodriguez, L. L., Jahrling, P. B., Sanchez, A., Khan, A. S., Nichol, S. T., Peters, C. J., Parren, P. W. & Burton, D. R. ( 1999; ). Ebola virus can be effectively neutralized by antibody produced in natural human infection. J Virol 73, 6024–6030.
    [Google Scholar]
  19. Peters, C. J., Sanchez, A., Rollin, P. E., Ksiazek, T. & Murphy, F. A. ( 1996; ). Filoviridae: Marburg and Ebola viruses. In Fields Virology, 3rd edn, pp. 1161–1176. Edited by P. M. Howley. Philadelphia: Lippincott-Raven Publishers.
  20. Pourrut, X., Kumulungui, B., Wittmann, T., Moussavou, G., Delicat, A., Yaba, P., Nkoghe, D., Gonzalez, J. P. & Leroy, E. M. ( 2005; ). The natural history of Ebola virus in Africa. Microbes Infect 7, 1005–1014.[CrossRef]
    [Google Scholar]
  21. Ray, R. B., Basu, A., Steele, R., Beyene, A., McHowat, J., Meyer, K., Ghosh, A. K. & Ray, R. ( 2004; ). Ebola virus glycoprotein-mediated anoikis of primary human cardiac microvascular endothelial cells. Virology 321, 181–188.[CrossRef]
    [Google Scholar]
  22. Ruthel, G., Demmin, G. L., Kallstrom, G. & 9 other authors ( 2005; ). Association of Ebola virus matrix protein VP40 with microtubules. J Virol 79, 4709–4719.[CrossRef]
    [Google Scholar]
  23. Ryabchikova, E., Kolesnikova, L. & Netesov, S. V. ( 1999a; ). Animal pathology of filoviral infections. Curr Top Microbiol Immunol 235, 145–173.
    [Google Scholar]
  24. Sanchez, A., Trappier, S. G., Mahy, B. W., Peters, C. J. & Nichol, S. T. ( 1996; ). The virion glycoproteins of Ebola viruses are encoded in two reading frames and are expressed through transcriptional editing. Proc Natl Acad Sci U S A 93, 3602–3607.[CrossRef]
    [Google Scholar]
  25. Sanchez, A., Yang, Z. Y., Xu, L., Nabel, G. J., Crews, T. & Peters, C. J. ( 1998; ). Biochemical analysis of the secreted and virion glycoproteins of Ebola virus. J Virol 72, 6442–6447.
    [Google Scholar]
  26. Simmons, G., Wool-Lewis, R. J., Baribaud, F., Netter, R. C. & Bates, P. ( 2002; ). Ebola virus glycoproteins induce global surface protein down-modulation and loss of cell adherence. J Virol 76, 2518–2528.[CrossRef]
    [Google Scholar]
  27. Stroher, U., West, E., Bugany, H., Klenk, H. D., Schnittler, H. J. & Feldmann, H. ( 2001; ). Infection and activation of monocytes by Marburg and Ebola viruses. J Virol 75, 11025–11033.[CrossRef]
    [Google Scholar]
  28. Sullivan, N. J., Peterson, M., Yang, Z. Y., Kong, W. P., Duckers, H., Nabel, E. & Nabel, G. J. ( 2005; ). Ebola virus glycoprotein toxicity is mediated by a dynamin-dependent protein-trafficking pathway. J Virol 79, 547–553.[CrossRef]
    [Google Scholar]
  29. Takada, A., Watanabe, S., Ito, H., Okazaki, K., Kida, H. & Kawaoka, Y. ( 2000; ). Downregulation of beta1 integrins by Ebola virus glycoprotein: implication for virus entry. Virology 278, 20–26.[CrossRef]
    [Google Scholar]
  30. Timmins, J., Scianimanico, S., Schoehn, G. & Weissenhorn, W. ( 2001; ). Vesicular release of ebola virus matrix protein VP40. Virology 283, 1–6.[CrossRef]
    [Google Scholar]
  31. Varnavski, A. N., Young, P. R. & Khromykh, A. A. ( 2000; ). Stable high-level expression of heterologous genes in vitro and in vivo by noncytopathic DNA-based Kunjin virus replicon vectors. J Virol 74, 4394–4403.[CrossRef]
    [Google Scholar]
  32. Volchkov, V. E., Becker, S., Volchkova, V. A., Ternovoj, V. A., Kotov, A. N., Netesov, S. V. & Klenk, H. D. ( 1995; ). GP mRNA of Ebola virus is edited by the Ebola virus polymerase and by T7 and vaccinia virus polymerases. Virology 214, 421–430.[CrossRef]
    [Google Scholar]
  33. Volchkov, V. E., Feldmann, H., Volchkova, V. A. & Klenk, H. D. ( 1998; ). Processing of the Ebola virus glycoprotein by the proprotein convertase furin. Proc Natl Acad Sci U S A 95, 5762–5767.[CrossRef]
    [Google Scholar]
  34. Volchkov, V. E., Volchkova, V. A., Muhlberger, E., Kolesnikova, L. V., Weik, M., Dolnik, O. & Klenk, H. D. ( 2001; ). Recovery of infectious Ebola virus from complementary DNA: RNA editing of the GP gene and viral cytotoxicity. Science 291, 1965–1969.[CrossRef]
    [Google Scholar]
  35. Volchkova, V. A., Feldmann, H., Klenk, H. D. & Volchkov, V. E. ( 1998; ). The nonstructural small glycoprotein sGP of Ebola virus is secreted as an antiparallel-orientated homodimer. Virology 250, 408–414.[CrossRef]
    [Google Scholar]
  36. Will, C., Muhlberger, E., Linder, D., Slenczka, W., Klenk, H. D. & Feldmann, H. ( 1993; ). Marburg virus gene 4 encodes the virion membrane protein, a type I transmembrane glycoprotein. J Virol 67, 1203–1210.
    [Google Scholar]
  37. Yang, Z., Delgado, R., Xu, L., Todd, R. F., Nabel, E. G., Sanchez, A. & Nabel, G. J. ( 1998; ). Distinct cellular interactions of secreted and transmembrane Ebola virus glycoproteins. Science 279, 1034–1037.[CrossRef]
    [Google Scholar]
  38. Yang, Z. Y., Duckers, H. J., Sullivan, N. J., Sanchez, A., Nabel, E. G. & Nabel, G. J. ( 2000; ). Identification of the Ebola virus glycoprotein as the main viral determinant of vascular cell cytotoxicity and injury. Nat Med 6, 886–889.[CrossRef]
    [Google Scholar]
  39. Yee, J. K., Miyanohara, A., LaPorte, P., Bouic, K., Burns, J. C. & Friedmann, T. ( 1994; ). A general method for the generation of high-titer, pantropic retroviral vectors: highly efficient infection of primary hepatocytes. Proc Natl Acad Sci U S A 91, 9564–9568.[CrossRef]
    [Google Scholar]
  40. Zaki, S. R. & Goldsmith, C. S. ( 1999; ). Pathologic features of filovirus infections in humans. Curr Top Microbiol Immunol 235, 97–116.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81361-0
Loading
/content/journal/jgv/10.1099/vir.0.81361-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error