1887

Abstract

The fowl adenovirus 1 (FAdV-1) isolates PHELPS and OTE are highly similar, but have striking differences in the repeat region of the inverted terminal repeat (ITR). Whilst the repeat region in OTE conforms to the conventional human adenovirus repeat region (5′-CATCATC), that of PHELPS contains guanidine residues at positions 1, 4 and 7 (5′-GATGATG). This implies that the FAdV-1 isolates PHELPS and OTE have either distinct template specificity at replication initiation or, alternatively, a relaxed specificity for replication initiation. In this study, the distinct sequence variation at the origin of DNA replication in the ITRs of the FAdV-1 PHELPS and OTE isolates was confirmed. Sequence analyses of the pTP and Pol genes of both PHELPS and OTE did not reveal differences that could explain the distinct template specificity. Replication assays demonstrated that linear DNA fragments flanked by either 5′-CATCATC or 5′-GATGATG termini replicated in cells upon infection with FAdV-1 OTE and FAdV-1 PHELPS. This was evident from the appearance of I-resistant fragments in a minireplicon assay. From these data, it is concluded that FAdV-1 has relaxed, rather than changed, its template specificity at replication initiation.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81328-0
2006-03-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/3/553.html?itemId=/content/journal/jgv/10.1099/vir.0.81328-0&mimeType=html&fmt=ahah

References

  1. Bernstein, J. A., Porter, J. M. & Challberg, M. D. ( 1986; ). Template requirements for in vivo replication of adenovirus DNA. Mol Cell Biol 6, 2115–2124.
    [Google Scholar]
  2. Botting, C. H. & Hay, R. T. ( 1999; ). Characterisation of the adenovirus preterminal protein and its interaction with the POU homeodomain of NFIII (Oct-1). Nucleic Acids Res 27, 2799–2805.[CrossRef]
    [Google Scholar]
  3. Carusi, E. A. ( 1977; ). Evidence for blocked 5′-termini in human adenovirus DNA. Virology 76, 380–394.[CrossRef]
    [Google Scholar]
  4. Challberg, M. D. & Kelly, T. J., Jr ( 1981; ). Processing of the adenovirus terminal protein. J Virol 38, 272–277.
    [Google Scholar]
  5. Challberg, M. D. & Rawlins, D. R. ( 1984; ). Template requirements for the initiation of adenovirus DNA replication. Proc Natl Acad Sci U S A 81, 100–104.[CrossRef]
    [Google Scholar]
  6. Chiocca, S., Kurzbauer, R., Schaffner, G., Baker, A., Mautner, V. & Cotten, M. ( 1996; ). The complete DNA sequence and genomic organization of the avian adenovirus CELO. J Virol 70, 2939–2949.
    [Google Scholar]
  7. Davison, A. J., Benkő, M. & Harrach, B. ( 2003; ). Genetic content and evolution of adenoviruses. J Gen Virol 84, 2895–2908.[CrossRef]
    [Google Scholar]
  8. Dekker, J., Kanellopoulos, P. N., Loonstra, A. K., van Oosterhout, J. A. W. M., Leonard, K., Tucker, P. A. & van der Vliet, P. C. ( 1997; ). Multimerization of the adenovirus DNA-binding protein is the driving force for ATP-independent DNA unwinding during strand displacement synthesis. EMBO J 16, 1455–1463.[CrossRef]
    [Google Scholar]
  9. Desiderio, S. V. & Kelly, T. J., Jr ( 1981; ). Structure of the linkage between adenovirus DNA and the 55,000 molecular weight terminal protein. J Mol Biol 145, 319–337.[CrossRef]
    [Google Scholar]
  10. Enomoto, T., Lichy, J. H., Ikeda, J.-E. & Hurwitz, J. ( 1981; ). Adenovirus DNA replication in vitro: purification of the terminal protein in a functional form. Proc Natl Acad Sci U S A 78, 6779–6783.[CrossRef]
    [Google Scholar]
  11. Fallaux, F. J., Kranenburg, O., Cramer, S. J., Houweling, A., Van Ormondt, H., Hoeben, R. C. & Van der Eb, A. J. ( 1996; ). Characterization of 911: a new helper cell line for the titration and propagation of early region 1-deleted adenoviral vectors. Hum Gene Ther 7, 215–222.[CrossRef]
    [Google Scholar]
  12. Florea, L., Hartzell, G., Zhang, Z., Rubin, G. M. & Miller, W. ( 1998; ). A computer program for aligning a cDNA sequence with a genomic DNA sequence. Genome Res 8, 967–974.
    [Google Scholar]
  13. Guggenheimer, R. A., Stillman, B. W., Nagata, K., Tamanoi, F. & Hurwitz, J. ( 1984; ). DNA sequences required for the in vitro replication of adenovirus DNA. Proc Natl Acad Sci U S A 81, 3069–3073.[CrossRef]
    [Google Scholar]
  14. Harris, M. P. & Hay, R. T. ( 1988; ). DNA sequences required for the initiation of adenovirus type 4 DNA replication in vitro. J Mol Biol 201, 57–67.[CrossRef]
    [Google Scholar]
  15. Hatfield, L. & Hearing, P. ( 1993; ). The NFIII/OCT-1 binding site stimulates adenovirus DNA replication in vivo and is functionally redundant with adjacent sequences. J Virol 67, 3931–3939.
    [Google Scholar]
  16. Hay, R. T. ( 1985; ). The origin of adenovirus DNA replication: minimal DNA sequence requirement in vivo. EMBO J 4, 421–426.
    [Google Scholar]
  17. Hay, R. T., Stow, N. D. & McDougall, I. M. ( 1984; ). Replication of adenovirus mini-chromosomes. J Mol Biol 175, 493–510.[CrossRef]
    [Google Scholar]
  18. Hirt, B. ( 1967; ). Selective extraction of polyoma DNA from infected mouse cell cultures. J Mol Biol 26, 365–369.[CrossRef]
    [Google Scholar]
  19. Karlin, S. & Altschul, S. F. ( 1990; ). Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. Proc Natl Acad Sci U S A 87, 2264–2268.[CrossRef]
    [Google Scholar]
  20. King, A. J. & van der Vliet, P. C. ( 1994; ). A precursor terminal protein–trinucleotide intermediate during initiation of adenovirus DNA replication: regeneration of molecular ends in vitro by a jumping back mechanism. EMBO J 13, 5786–5792.
    [Google Scholar]
  21. King, A. J., Teertstra, W. R., Blanco, L., Salas, M. & van der Vliet, P. C. ( 1997a; ). Processive proofreading by the adenovirus DNA polymerase. Association with the priming protein reduces exonucleolytic degradation. Nucleic Acids Res 25, 1745–1752.[CrossRef]
    [Google Scholar]
  22. King, A. J., Teertstra, W. R. & van der Vliet, P. C. ( 1997b; ). Dissociation of the protein primer and DNA polymerase after initiation of adenovirus DNA replication. J Biol Chem 272, 24617–24623.[CrossRef]
    [Google Scholar]
  23. Lally, C., Dörper, T., Gröger, W., Antoine, G. & Winnacker, E.-L. ( 1984; ). A size analysis of the adenovirus replicon. EMBO J 3, 333–337.
    [Google Scholar]
  24. Lawrence, C. E., Altschul, S. F., Boguski, M. S., Liu, J. S., Neuwald, A. F. & Wootton, J. C. ( 1993; ). Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment. Science 262, 208–214.[CrossRef]
    [Google Scholar]
  25. Mul, Y. M., Verrijzer, C. P. & van der Vliet, P. C. ( 1990; ). Transcription factors NFI and NFIII/oct-1 function independently, employing different mechanisms to enhance adenovirus DNA replication. J Virol 64, 5510–5518.
    [Google Scholar]
  26. Rademaker, H. J., Abou El Hassan, M. A., Versteeg, G. A., Rabelink, M. J. W. E. & Hoeben, R. C. ( 2002; ). Efficient mobilization of E1-deleted adenovirus type 5 vectors by wild-type adenoviruses of other serotypes. J Gen Virol 83, 1311–1314.
    [Google Scholar]
  27. Rawlins, D. R., Rosenfeld, P. J., Wides, R. J., Challberg, M. D. & Kelly, T. J., Jr ( 1984; ). Structure and function of the adenovirus origin of replication. Cell 37, 309–319.[CrossRef]
    [Google Scholar]
  28. Rekosh, D. M. K., Russell, W. C., Bellet, A. J. D. & Robinson, A. J. ( 1977; ). Identification of a protein linked to the ends of adenovirus DNA. Cell 11, 283–295.[CrossRef]
    [Google Scholar]
  29. Robinson, A. J., Younghusband, H. B. & Bellett, A. J. D. ( 1973; ). A circular DNA–protein complex from adenoviruses. Virology 56, 54–69.[CrossRef]
    [Google Scholar]
  30. Schuler, G. D., Altschul, S. F. & Lipman, D. J. ( 1991; ). A workbench for multiple alignment construction and analysis. Proteins 9, 180–190.[CrossRef]
    [Google Scholar]
  31. Shinagawa, M., Ishiyama, T., Padmanabhan, R., Fujinaga, K., Kamada, M. & Sato, G. ( 1983; ). Comparative sequence analysis of the inverted terminal repetition in the genomes of animal and avian adenoviruses. Virology 125, 491–495.[CrossRef]
    [Google Scholar]
  32. Shu, L. M., Horwitz, M. S. & Engler, J. A. ( 1987; ). Expression of enzymatically active adenovirus DNA polymerase from cloned DNA requires sequences upstream of the main open reading frame. Virology 161, 520–526.[CrossRef]
    [Google Scholar]
  33. Shu, L., Pettit, S. C. & Engler, J. A. ( 1988; ). The precise structure and coding capacity of mRNAs from early region 2B of human adenovirus serotype 2. Virology 165, 348–356.[CrossRef]
    [Google Scholar]
  34. Smart, J. E. & Stillman, B. W. ( 1982; ). Adenovirus terminal protein precursor. Partial amino acid sequence and the site of covalent linkage to virus DNA. J Biol Chem 257, 13499–13506.
    [Google Scholar]
  35. Stillman, B. W. & Tamanoi, F. ( 1983; ). Adenoviral DNA replication: DNA sequences and enzymes required for initiation in vitro. Cold Spring Harbor Symp Quant Biol 47, 741–750.[CrossRef]
    [Google Scholar]
  36. Tamanoi, F. & Stillman, B. W. ( 1983; ). Initiation of adenovirus DNA replication in vitro requires a specific DNA sequence. Proc Natl Acad Sci U S A 80, 6446–6450.[CrossRef]
    [Google Scholar]
  37. Tamanoi, F. & Stillman, B. W. ( 1984; ). The origin of adenovirus DNA replication. Curr Top Microbiol Immunol 109, 75–87.
    [Google Scholar]
  38. van Bergen, B. G. M., van der Ley, P. A., van Driel, W., van Mansfeld, A. D. M. & van der Vliet, P. C. ( 1983; ). Replication of origin containing adenovirus DNA fragments that do not carry the terminal protein. Nucleic Acids Res 11, 1975–1989.[CrossRef]
    [Google Scholar]
  39. Verrijzer, C. P., Kal, A. J. & Van der Vliet, P. C. ( 1990; ). The DNA binding domain (POU domain) of transcription factor oct-1 suffices for stimulation of DNA replication. EMBO J 9, 1883–1888.
    [Google Scholar]
  40. Wang, K. & Pearson, G. D. ( 1985; ). Adenovirus sequences required for replication in vivo. Nucleic Acids Res 13, 5173–5187.[CrossRef]
    [Google Scholar]
  41. Wides, R. J., Challberg, M. D., Rawlins, D. R. & Kelly, T. J. ( 1987; ). Adenovirus origin of DNA replication: sequence requirements for replication in vitro. Mol Cell Biol 7, 864–874.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81328-0
Loading
/content/journal/jgv/10.1099/vir.0.81328-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error