1887

Abstract

(Braconidae, Hymenoptera) is an endoparasitoid of , the gypsy moth. Expression of polydnavirus (GiBV)-encoded genes within the pest host results in inhibition of immune response and development and alteration of physiology, enabling successful development of the parasitoid. Here, GiBV genome segment F (segF), an 18·6 kb segment shown to encode nine protein tyrosine phosphatase (PTP) genes and a single ankyrin repeat gene (ank), is analysed. PTPs have presumed function as regulators of signal transduction, while ankyrin repeat genes are hypothesized to function in inhibition of NF-B signalling in the parasitized host. In this study, transcription of each gene was mapped by 5′- and 3′-RACE (rapid amplification of cDNA ends) and temporal and tissue-specific expression was examined in the parasitized host. For polydnavirus gene prediction in the parasitized host, no available gene prediction parameters were entirely precise. The mRNAs for each GiBV segF gene initiated between 30 and 112 bp upstream of the translation initiation codon. All were encoded in single open reading frames (ORFs), with the exception of PTP9, which was transcribed as a bicistronic message with the adjacent ank gene. RT-PCR indicated that all GiBV segF PTPs were expressed early in parasitization and, for most, expression was sustained over the course of at least 7 days after parasitization, suggesting importance in both early and sustained virus-induced immunosuppression and alteration of physiology. Tissue-specific patterns of PTP expression of GiBV segF genes were variable, suggesting differing roles in facilitating parasitism.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81326-0
2006-02-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/2/311.html?itemId=/content/journal/jgv/10.1099/vir.0.81326-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  2. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  3. Asgari, S., Hellers, M. & Schmidt, O. ( 1996; ). Host haemocyte inactivation by an insect parasitoid: transient expression of a polydnavirus gene. J Gen Virol 77, 2653–2662.[CrossRef]
    [Google Scholar]
  4. Asgari, S., Schmidt, O. & Theopold, U. ( 1997; ). A polydnavirus-encoded protein of an endoparasitoid wasp is an immune suppresser. J Gen Virol 78, 3061–3070.
    [Google Scholar]
  5. Beckage, N. E., Tan, F. F., Schleifer, K. W., Lane, R. D. & Cherubin, L. ( 1994; ). Characterization and biological effects of Cotesia congregata polydnavirus on host larvae of the tobacco hornworm, Manduca sexta. Arch Insect Biochem Physiol 26, 165–195.[CrossRef]
    [Google Scholar]
  6. Béliveau, C., Laforge, M., Cusson, M. & Bellemare, G. ( 2000; ). Expression of a Tranosema rostrale polydnavirus gene in the spruce budworm, Choristoneura fumiferana. J Gen Virol 81, 1871–1880.
    [Google Scholar]
  7. Bell, R. A., Owens, C. D., Shapiro, M. & Tardif, J. R. ( 1981; ). Development of mass-rearing technology. In The Gypsy Moth: Research Toward Integrated Pest Management, USDA Technical Bulletin no. 1584, pp. 599–633. Edited by C. C. Doane & M. L. McManus. Washington, DC: US Department of Agriculture.
  8. Blissard, G. W., Vinson, S. B. & Summers, M. D. ( 1986; ). Identification, mapping, and in vitro translation of Campoletis sonorensis virus mRNAs from parasitized Heliothis virescens larvae. J Virol 57, 318–327.
    [Google Scholar]
  9. Bonvin, M., Kojic, D., Balnk, F., Annaheim, M., Wehrle, I., Wyder, S., Kaeslin, M. & Lanzrein, B. ( 2004; ). Stage-dependent expression of Chelonus inanitus polydnavirus genes in the host and the parasitoid. J Insect Physiol 50, 1015–1026.[CrossRef]
    [Google Scholar]
  10. Burge, C. B. ( 1998; ). Modeling dependencies in pre-mRNA splicing signals. In Computational Methods in Molecular Biology, pp. 127–163. Edited by S. Salzberg, D. Searls & S. Kasif. Amsterdam: Elsevier Science.
  11. Burge, C. B. & Karlin, S. ( 1998; ). Finding the genes in genomic DNA. Curr Opin Struct Biol 8, 346–354.[CrossRef]
    [Google Scholar]
  12. Chen, Y. P. & Gundersen-Rindal, D. E. ( 2003; ). Morphological and molecular characterization of the polydnavirus in the parasitoid wasp Glyptapanteles indiensis (Hymenoptera: Braconidae). J Gen Virol 84, 2051–2060.[CrossRef]
    [Google Scholar]
  13. Chen, Y. P., Taylor, P. B., Shapiro, M. & Gundersen-Rindal, D. E. ( 2003a; ). Quantitative expression analysis of a Glyptapanteles indiensis polydnavirus protein tyrosine phosphatase gene in its natural lepidopteran host, Lymantria dispar. Insect Mol Biol 12, 271–280.[CrossRef]
    [Google Scholar]
  14. Chen, Y. P., Higgins, J. A. & Gundersen-Rindal, D. E. ( 2003b; ). Quantification of a Glyptapanteles indiensis polydnavirus gene expressed in its parasitized host, Lymantria dispar, by real-time quantitative RT-PCR. J Virol Methods 114, 125–133.[CrossRef]
    [Google Scholar]
  15. Cui, L. & Webb, B. A. ( 1998; ). Relationships between PDV genomes and viral gene expression. J Insect Physiol 44, 785–793.[CrossRef]
    [Google Scholar]
  16. Cui, L., Soldevila, A. & Webb, B. A. ( 1997; ). Expression and hemocyte-targeting of a Campoletis sonorensis polydnavirus cysteine-rich gene in Heliothis virescens larvae. Arch Insect Biochem Physiol 36, 251–271.[CrossRef]
    [Google Scholar]
  17. Espagne, E., Dupuy, C., Huguet, E., Cattolico, L., Provost, B., Martins, N., Poirie, M., Periquet, G. & Drezen, J.-M. ( 2004; ). Genome sequence of a polydnavirus: insights into symbiotic virus evolution. Science 306, 286–289.[CrossRef]
    [Google Scholar]
  18. Fleming, J. G. W. ( 1991; ). The integration of polydnavirus genomes in parasitoid genomes: implications for biocontrol and genetic analyses of parasitoid wasps. Biol Control 1, 127–135.[CrossRef]
    [Google Scholar]
  19. Fleming, J. G. W. & Summers, M. D. ( 1986; ). Campoletis sonorensis endoparasitic wasps contain forms of C. sonorensis virus DNA suggestive of integrated and extrachromosomal polydnavirus DNAs. J Virol 57, 552–562.
    [Google Scholar]
  20. Glatz, R., Roberts, H. L., Li, D., Sarjan, M., Theopold, U. H., Asgari, S. & Schmidt, O. ( 2004; ). Lectin-induced haemocyte inactivation in insects. J Insect Physiol 50, 955–963.[CrossRef]
    [Google Scholar]
  21. Gruber, A., Stettler, P., Heiniger, P., Schumperli, D. & Lanzrein, B. ( 1996; ). Polydnavirus DNA of the braconid wasp Chelonus inanitus is integrated in the wasp's genome and excised only in later pupal and adult stages of the female. J Gen Virol 77, 2873–2879.[CrossRef]
    [Google Scholar]
  22. Gundersen-Rindal, D. & Dougherty, E. M. ( 2000; ). Evidence for integration of Glyptapanteles indiensis polydnavirus DNA into the chromosome of Lymantria dispar in vitro. Virus Res 66, 27–37.[CrossRef]
    [Google Scholar]
  23. Gundersen-Rindal, D. E. & Lynn, D. E. ( 2003; ). Polydnavirus integration in lepidopteran host cells in vitro. J Insect Physiol 49, 453–462.[CrossRef]
    [Google Scholar]
  24. Hayakawa, Y., Yazaki, K., Yamanaka, A. & Tanaka, T. ( 1994; ). Expression of polydnavirus genes from the parasitoid wasp Cotesia kariyai in two noctuid hosts. Insect Mol Biol 3, 97–103.[CrossRef]
    [Google Scholar]
  25. Johner, A. & Lanzrein, B. ( 2002; ). Characterization of two genes of the polydnavirus of Chelonus inanitus and their stage-specific expression in the host Spodoptera littoralis. J Gen Virol 83, 1075–1085.
    [Google Scholar]
  26. Johner, A., Stettler, P., Gruber, A. & Lanzrein, B. ( 1999; ). Presence of polydnavirus transcripts in an egg–larval parasitoid and its lepidopterous host. J Gen Virol 80, 1847–1854.
    [Google Scholar]
  27. Kroemer, J. A. & Webb, B. A. ( 2004; ). Polydnavirus genes and genomes: emerging gene families and new insights into polydnavirus replication. Annu Rev Entomol 49, 431–456.[CrossRef]
    [Google Scholar]
  28. Lavine, M. D. & Beckage, N. E. ( 1996; ). Temporal pattern of parasitism-induced immunosuppression in Manduca sexta larvae parasitized by Cotesia congregata. J Insect Physiol 42, 41–51.[CrossRef]
    [Google Scholar]
  29. Lawrence, P. O. & Lanzrein, B. ( 1993; ). Hormonal interactions between insect endoparasites and their host insects. In Parasites and Pathogens of Insects, vol. 1, pp. 59–86. Edited by N. E. Beckage, S. N. Thompson & B. A. Federici. San Diego: Academic Press.
  30. Li, X. & Webb, B. A. ( 1994; ). Apparent functional role for a cysteine-rich polydnavirus protein in suppression of the insect cellular immune response. J Virol 68, 7482–7489.
    [Google Scholar]
  31. Neel, B. G. & Tonks, N. K. ( 1997; ). Protein tyrosine phosphatases in signal transduction. Curr Opin Cell Biol 9, 193–204.[CrossRef]
    [Google Scholar]
  32. Norton, W. N. & Vinson, S. B. ( 1983; ). Correlating the initiation of virus replication with a specific pupal developmental phase of an ichneumonid parasitoid. Cell Tissue Res 231, 387–398.
    [Google Scholar]
  33. Pennacchio, F., Falabella, P. & Vinson, S. B. ( 1998; ). Regulation of Heliothis virescens prothoracic glands by Cardiochiles nigriceps polydnavirus. Arch Insect Biochem Physiol 38, 1–10.[CrossRef]
    [Google Scholar]
  34. Provost, B., Varricchio, P., Arana, E. & 10 other authors ( 2004; ). Bracoviruses contain a large multigene family coding for protein tyrosine phosphatases. J Virol 78, 13090–13103.[CrossRef]
    [Google Scholar]
  35. Salamov, A. A. & Solovyev, V. V. ( 2000; ). Ab initio gene finding in Drosophila genomic DNA. Genome Res 10, 516–522.[CrossRef]
    [Google Scholar]
  36. Savary, S., Beckage, N., Tan, F., Periquet, G. & Drezen, J.-M. ( 1997; ). Excision of the polydnavirus chromosomal integrated EP1 sequence of the parasitoid wasp Cotesia congregata (Braconidae, Microgastinae) at potential recombinase binding sites. J Gen Virol 78, 3125–3134.
    [Google Scholar]
  37. Shelby, K. S. & Webb, B. A. ( 1994; ). Polydnavirus infection inhibits synthesis of an insect plasma protein, arylphorin. J Gen Virol 75, 2285–2292.[CrossRef]
    [Google Scholar]
  38. Solovyev, V. V. & Salamov, A. A. ( 1999; ). infogene: a database of known gene structures and predicted genes and proteins in sequences of genome sequencing projects. Nucleic Acids Res 27, 248–250.[CrossRef]
    [Google Scholar]
  39. Stoltz, D. B. ( 1990; ). Evidence for chromosomal transmission of polydnavirus DNA. J Gen Virol 71, 1051–1056.[CrossRef]
    [Google Scholar]
  40. Stoltz, D. B. ( 1993; ). The polydnavirus life cycle. In Parasites and Pathogens of Insects, vol. 1, pp. 167–187. Edited by N. E. Beckage, S. N. Thompson & B. A. Federici. San Diego: Academic Press.
  41. Stoltz, D. B., Guzo, D. & Cook, D. ( 1986; ). Studies on polydnavirus transmission. Virology 155, 120–131.[CrossRef]
    [Google Scholar]
  42. Strand, M. R. ( 1994; ). Microplitis demolitor polydnavirus infects and expresses in specific morphotypes of Pseudoplusia includens haemocytes. J Gen Virol 75, 3007–3020.[CrossRef]
    [Google Scholar]
  43. Strand, M. R. & Pech, L. L. ( 1995; ). Immunological basis for compatibility in parasitoid-host relationships. Annu Rev Entomol 40, 31–56.[CrossRef]
    [Google Scholar]
  44. Strand, M. R., McKenzie, D. I., Grassl, V., Dover, B. A. & Aiken, J. M. ( 1992; ). Persistence and expression of Microplitis demolitor polydnavirus in Pseudoplusia includens. J Gen Virol 73, 1627–1635.[CrossRef]
    [Google Scholar]
  45. Summers, M. D. & Dibb-Hajj, S. ( 1995; ). Polydnavirus-facilitated endoparasite protection against host immune defenses. Proc Natl Acad Sci U S A 92, 29–36.[CrossRef]
    [Google Scholar]
  46. Theilmann, D. A. & Summers, M. D. ( 1986; ). Molecular analysis of Campoletis sonorensis virus DNA in the lepidopteran host Heliothis virescens. J Gen Virol 67, 1961–1969.[CrossRef]
    [Google Scholar]
  47. Vinson, B. S., Malva, C., Varricchio, P., Sordetti, R., Falabella, P. & Pennacchio, F. ( 1998; ). Prothoracic gland inactivation in Heliothis virescens (F.) (Lepidoptera: Noctuidae) larvae parasitized by Cardiochiles nigriceps Viereck (Hymenoptera: Braconidae). J Insect Physiol 44, 845–857.[CrossRef]
    [Google Scholar]
  48. Volkoff, A.-N., Béliveau, C., Rocher, J., Hilgarth, R., Levasseur, A., Duonor-Cérutti, M., Cusson, M. & Webb, B. A. ( 2002; ). Evidence for a conserved polydnavirus gene family: ichnovirus homologs of the CsIV repeat element genes. Virology 300, 316–331.[CrossRef]
    [Google Scholar]
  49. Wyder, T. & Lanzrein, B. ( 2003; ). Ovary development and polydnavirus morphogenesis in the parasitic wasp Chelonus inanitus. II. Ultrastructural analysis of calyx cell development, virion formation and release. J Gen Virol 84, 1151–1163.[CrossRef]
    [Google Scholar]
  50. Wyder, S., Tschannen, A., Hochuli, A., Gruber, A., Saladin, V., Zumbach, S. & Lanzrein, B. ( 2002; ). Characterization of Chelonus inanitus polydnavirus segments: sequences and analysis, excision site and demonstration of clustering. J Gen Virol 83, 247–256.
    [Google Scholar]
  51. Yamanaka, A., Hayakawa, Y., Noda, H., Nakashima, N. & Watanabe, H. ( 1996; ). Characterization of polydnavirus-encoded mRNA in parasitized armyworm larvae. Insect Biochem Mol Biol 26, 529–536.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81326-0
Loading
/content/journal/jgv/10.1099/vir.0.81326-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error