Cytological analysis of cells supporting cymbidium ringspot virus defective interfering RNA replication Free

Abstract

The replicase proteins p33 and p92 of (CymRSV) were found to support the replication of defective interfering (DI) RNA in cells. Two yeast strains were used, differing in the biogenesis of peroxisomes, the organelles supplying the membranous vesicular environment in which CymRSV RNA replication takes place in infected plant cells. Double-labelled immunofluorescence showed that both p33 and p92 replicase proteins localized to peroxisomes, independently of one another and of the presence of the replication template. It is suggested that these proteins are sorted initially from the cytosol to the endoplasmic reticulum and then to peroxisomes. However, only the expression of p33, but not p92, increased the number of peroxisomes and induced membrane proliferation. DI RNA replication occurred in yeast cells, as demonstrated by the presence of monomers and dimers of positive and negative polarities. Labelling with BrUTP showed that peroxisomes were the sites of nascent viral synthesis, whereas hybridization indicated that DI RNA progeny were diffused throughout the cytoplasm. DI RNA replication also took place in yeast cells devoid of peroxisomes. It is suggested that replication in these cells was targeted to the endoplasmic reticulum.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81325-0
2006-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/3/705.html?itemId=/content/journal/jgv/10.1099/vir.0.81325-0&mimeType=html&fmt=ahah

References

  1. Baerends R. J. S., Rasmussen S. W., Hilbrands R. E. & 7 other authors 1996; The Hansenula polymorpha PER9 gene encodes a peroxisomal membrane protein essential for peroxisome assembly and integrity. J Biol Chem 271:8887–8894 [CrossRef]
    [Google Scholar]
  2. Baerends R. J. S., Faber K. N., Kiel J. A. K. W., van der Klei I. J., Harder W., Veenhuis M. 2000; Sorting and function of peroxisomal membrane proteins. FEMS Microbiol Rev 24:291–301 [CrossRef]
    [Google Scholar]
  3. Beier H., Grimm M. 2001; Misreading of termination codons in eukaryotes by natural nonsense suppressor tRNAs. Nucleic Acids Res 29:4767–4782 [CrossRef]
    [Google Scholar]
  4. Burgyan J., Dalmay T., Rubino L., Russo M. 1992; The replication of cymbidium ringspot tombusvirus defective interfering-satellite RNA hybrid molecules. Virology 190:579–586 [CrossRef]
    [Google Scholar]
  5. Burgyan J., Rubino L., Russo M. 1996; The 5′-terminal region of a tombusvirus genome determines the origin of multivesicular bodies. J Gen Virol 77:1967–1974 [CrossRef]
    [Google Scholar]
  6. Di Franco A., Russo M., Martelli G. P. 1984; Ultrastructure and origin of cytoplasmic multivesicular bodies induced by carnation Italian ringspot virus. J Gen Virol 65:1233–1237 [CrossRef]
    [Google Scholar]
  7. Elgersma Y., Vos A., van der Berg M., van Roermund C. W. T., van der Sluijs P., Distel B., Tabak H. F. 1996; Analysis of the carboxyl-terminal peroxisomal targeting signal 1 in a homologous context in Saccharomyces cerevisiae . J Biol Chem 271:26375–26382 [CrossRef]
    [Google Scholar]
  8. Elgersma Y., Kwast L., van den Berg M., Snyder W. B., Distel B., Subramani S., Tabak H. F. 1997; Overexpression of Pex15p, a phosphorylated peroxisomal integral membrane protein required for peroxisome assembly in S. cerevisiae , causes proliferation of the endoplasmic reticulum membrane. EMBO J 16:7326–7341 [CrossRef]
    [Google Scholar]
  9. Erdmann R., Veenhuis D., Mertens D., Kunau W.-H. 1989; Isolation of peroxisome-deficient mutants of Saccharomyces cerevisiae . Proc Natl Acad Sci U S A 86:5419–5423 [CrossRef]
    [Google Scholar]
  10. Evan G. I., Lewis G. K., Ramsay G., Bishop J. M. 1985; Isolation of monoclonal antibodies specific for human c- myc proto-oncogene product. Mol Cell Biol 5:3610–3616
    [Google Scholar]
  11. Fang Y., Morrell J. C., Jones J. M., Gould S. J. 2004; PEX3 functions as a PEX19 docking factor in the import of class I peroxisomal membrane proteins. J Cell Biol 164:863–875 [CrossRef]
    [Google Scholar]
  12. Götte K., Girzalsky W., Linkert M., Baumgart E., Kammerer S., Kunau W.-H., Erdmann R. 1998; Pex19p, a farnesylated protein essential for peroxisome biogenesis. Mol Cell Biol 18:616–628
    [Google Scholar]
  13. Hettema E. H., Girzalsky W., van den Berg M., Erdmann R., Distel B. 2000; Saccharomyces cerevisiae Pex3p and Pex19p are required for proper localization and stability of peroxisomal membrane proteins. EMBO J 19:223–233 [CrossRef]
    [Google Scholar]
  14. Ishikawa M., Janda M., Krol M. A., Ahlquist P. 1997; In vivo DNA expression of functional brome mosaic virus RNA replicons in Saccharomyces cerevisiae . J Virol 71:7781–7790
    [Google Scholar]
  15. Ito H., Fukuda Y., Murata K., Kimura A. 1983; Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168
    [Google Scholar]
  16. Jones J. M., Morrell J. C., Gould S. J. 2004; PEX19 is a predominantly cytosolic chaperone and import receptor for class 1 peroxisomal membrane proteins. J Cell Biol 164:57–67 [CrossRef]
    [Google Scholar]
  17. Kammerer S., Holzinger A., Welsch U., Roscher A. A. 1998; Cloning and characterization of the gene encoding the human peroxisomal assembly protein Pex3p. FEBS Lett 429:53–60 [CrossRef]
    [Google Scholar]
  18. Kolodziej P. A., Young R. A. 1991; Epitope tagging and protein surveillance. Methods Enzymol 194:508–519
    [Google Scholar]
  19. Leeds P., Peltz S. W., Jacobson A., Culbertson M. R. 1991; The product of the yeast UPF1 gene is required for rapid turnover of mRNAs containing a premature translational termination codon. Genes Dev 5:2303–2314 [CrossRef]
    [Google Scholar]
  20. Miller D. J., Schwartz M. D., Ahlquist P. 2001; Flock house virus RNA replicates on outer mitochondrial membranes in Drosophila cells. J Virol 75:11664–11676 [CrossRef]
    [Google Scholar]
  21. Miller D. J., Schwartz M. D., Dye B. T., Ahlquist P. 2003; Engineered retargeting of viral RNA replication complexes to an alternative intracellular membrane. J Virol 77:12193–12202 [CrossRef]
    [Google Scholar]
  22. Navarro B., Rubino L., Russo M. 2004; Expression of the Cymbidium ringspot virus 33-kilodalton protein in Saccharomyces cerevisiae and molecular dissection of the peroxisomal targeting signal. J Virol 78:4744–4752 [CrossRef]
    [Google Scholar]
  23. Panavas T., Nagy P. D. 2003; Yeast as a model host to study replication and recombination of defective interfering RNA of Tomato bushy stunt virus . Virology 314:315–325 [CrossRef]
    [Google Scholar]
  24. Panavas T., Hawkins C. M., Panaviene Z., Nagy P. D. 2005a; The role of the p33 : p33/p92 interaction domain in RNA replication and intracellular localization of p33 and p92 proteins of Cucumber necrosis tombusvirus. Virology 338:81–95 [CrossRef]
    [Google Scholar]
  25. Panavas T., Serviene E., Brasher J., Nagy P. D. 2005b; Yeast genome-wide screen reveals dissimilar sets of host genes affecting replication of RNA viruses. Proc Natl Acad Sci U S A 102:7326–7331 [CrossRef]
    [Google Scholar]
  26. Panaviene Z., Panavas T., Serva S., Nagy P. D. 2004; Purification of the Cucumber necrosis virus replicase from yeast cells: role of coexpressed viral RNA in stimulation of replicase activity. J Virol 78:8254–8263 [CrossRef]
    [Google Scholar]
  27. Pantaleo V., Rubino L., Russo M. 2003; Replication of Carnation Italian ringspot virus defective interfering RNA in Saccharomyces cerevisiae . J Virol 77:2116–2123 [CrossRef]
    [Google Scholar]
  28. Pantaleo V., Rubino L., Russo M. 2004; The p36 and p95 replicase proteins of Carnation Italian ringspot virus cooperate in stabilizing defective interfering RNA. J Gen Virol 85:2429–2433 [CrossRef]
    [Google Scholar]
  29. Redding K., Holcomb C., Fuller R. S. 1991; Immunolocalization of Kex2 protease identifies a putative late Golgi compartment in the yeast Saccharomyces cerevisiae . J Cell Biol 113:527–538 [CrossRef]
    [Google Scholar]
  30. Restrepo-Hartwig M., Ahlquist P. 1999; Brome mosaic virus RNA replication proteins 1a and 2a colocalize and 1a independently localizes on the yeast endoplasmic reticulum. J Virol 73:10303–10309
    [Google Scholar]
  31. Rottensteiner H., Stein K., Sonnenhol E., Erdmann R. 2003; Conserved function of Pex11p and the novel Pex25p and Pex27p in peroxisome biogenesis. Mol Biol Cell 14:4316–4328 [CrossRef]
    [Google Scholar]
  32. Rottensteiner H., Kramer A., Lorenzen S., Stein K., Landgraf C., Volkmer-Engert R., Erdmann R. 2004; Peroxisomal membrane proteins contain common Pex19p-binding sites that are an integral part of their targeting signals. Mol Biol Cell 15:3406–3417 [CrossRef]
    [Google Scholar]
  33. Rubino L., Russo M. 1998; Membrane targeting sequences in tombusvirus infections. Virology 252:431–437 [CrossRef]
    [Google Scholar]
  34. Russo M., Di Franco A., Martelli G. P. 1983; The fine structure of Cymbidium ringspot virus infections in host tissues. III. Role of peroxisomes in the genesis of multivesicular bodies. J Ultrastruct Res 82:52–63 [CrossRef]
    [Google Scholar]
  35. Russo M., Di Franco A., Martelli G. P. 1987; Cytopathology in the identification and classification of tombusviruses. Intervirology 28:134–143 [CrossRef]
    [Google Scholar]
  36. Russo M., Burgyan J., Martelli G. P. 1994; Molecular biology of Tombusviridae . Adv Virus Res 44:381–428
    [Google Scholar]
  37. Sacksteder K., Jones J. M., South S. T., Li X., Liu Y., Gould S. J. 2000; PEX19 binds multiple peroxisomal membrane proteins, is predominantly cytoplasmic, and is required for peroxisome membrane synthesis. J Cell Biol 148:931–944 [CrossRef]
    [Google Scholar]
  38. Schlenstedt G., Hurt E., Doyle V., Silver P. A. 1993; Reconstitution of nuclear protein transport with semi-intact yeast cells. J Cell Biol 123:785–798 [CrossRef]
    [Google Scholar]
  39. Schwartz M., Chen J., Janda M., Sullivan M., den Boon J., Ahlquist P. 2002; A positive-strand RNA virus replication complex parallels form and function of retrovirus capsids. Mol Cell 9:505–514 [CrossRef]
    [Google Scholar]
  40. Snyder W. B., Faber K. N., Wenzel T. J., Koller A., Lüers G. H., Rangell L., Keller G. A., Subramani S. 1999; Pex19p interacts with Pex3p and Pex10p and is essential for peroxisome biogenesis in Pichia pastoris . Mol Biol Cell 10:1745–1761 [CrossRef]
    [Google Scholar]
  41. Titorenko V. I., Rachubinski R. A. 1998; Mutants of the yeast Yarrowia lipolytica defective in protein exit from the endoplasmic reticulum are also defective in peroxisome biogenesis. Mol Cell Biol 18:2789–2803
    [Google Scholar]
  42. Titorenko V. I., Rachubinski R. A. 2001; The life cycle of the peroxisome. Nat Rev Mol Cell Biol 2:357–368 [CrossRef]
    [Google Scholar]
  43. Voinnet O., Pinto Y. M., Baulcombe D. C. 1999; Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proc Natl Acad Sci U S A 96:14147–14152 [CrossRef]
    [Google Scholar]
  44. Weber-Lotfi F., Dietrich A., Russo M., Rubino L. 2002; Mitochondrial targeting and membrane anchoring of a viral replicase in plant and yeast cells. J Virol 76:10485–10496 [CrossRef]
    [Google Scholar]
  45. White K. A., Nagy P. D. 2004; Advances in the molecular biology of tombusviruses: gene expression, genome replication, and recombination. Prog Nucleic Acid Res Mol Biol 78:187–226
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81325-0
Loading
/content/journal/jgv/10.1099/vir.0.81325-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed