The glycosylation site in the envelope protein of (Sarafend) plays an important role in replication and maturation processes Free

Abstract

The complete genome of West Nile (Sarafend) virus [WN(S)V] was sequenced. Phylogenetic trees utilizing the complete genomic sequence, capsid gene, envelope gene and NS5 gene/3′ untranslated region of WN(S)V classified WN(S)V as a lineage II virus. A full-length infectious clone of WN(S)V with a point mutation in the glycosylation site of the envelope protein (pWNS-S154A) was constructed. Both growth kinetics and the mode of maturation were affected by this mutation. The titre of the pWNS-S154A virus was lower than the wild-type virus. This defect was corrected by the expression of wild-type envelope protein in . The pWNS-S154A virus matured intracellularly instead of at the plasma membrane as shown for the parental WN(S)V.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81320-0
2006-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/3/613.html?itemId=/content/journal/jgv/10.1099/vir.0.81320-0&mimeType=html&fmt=ahah

References

  1. Adams S. C., Broom A. K., Sammels L. M., Hartnett A. C., Howard M. J., Coelen R. J., Mackenzie J. S., Hall R. A. 1995; Glycosylation and antigenic variation among Kunjin virus isolates. Virology 206:49–56 [CrossRef]
    [Google Scholar]
  2. Bakonyi T., Hubalek Z., Rudolf I., Nowotny N. 2005; Novel flavivirus or new lineage of West Nile virus, central Europe. Emerg Infect Dis 11:225–231 [CrossRef]
    [Google Scholar]
  3. Beasley D. W., Barrett A. D. 2002; Identification of neutralizing epitopes within structural domain III of the West Nile virus envelope protein. J Virol 76:13097–13100 [CrossRef]
    [Google Scholar]
  4. Beasley D. W., Li L., Suderman M. T., Barrett A. D. 2002; Mouse neuroinvasive phenotype of West Nile virus strains varies depending upon virus genotype. Virology 296:17–23 [CrossRef]
    [Google Scholar]
  5. Berthet F. X., Zeller H. G., Drouet M. T., Rauzier J., Digoutte J. P., Deubel V. 1997; Extensive nucleotide changes and deletions within the envelope glycoprotein gene of Euro-African West Nile viruses. J Gen Virol 78:2293–2297
    [Google Scholar]
  6. Bhuvanakantham R., Ng M. L. 2005; Analysis of self-association of West Nile virus capsid protein and the crucial role played by Trp 69 in homodimerization. Biochem Biophys Res Commun 329:246–255 [CrossRef]
    [Google Scholar]
  7. Brandt M., Yao K., Liu M., Heckert R. A., Vakharia V. N. 2001; Molecular determinants of virulence, cell tropism, and pathogenic phenotype of infectious bursal disease virus. J Virol 75:11974–11982 [CrossRef]
    [Google Scholar]
  8. Bressanelli S., Stiasny K., Allison S. L., Stura E. A., Duquerroy S., Lescar J., Heinz F. X., Rey F. A. 2004; Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. EMBO J 23:728–738 [CrossRef]
    [Google Scholar]
  9. Chambers T. J., Hahn C. S., Galler R., Rice C. M. 1990; Flavivirus genome organization, expression, and replication. Annu Rev Microbiol 44:649–688 [CrossRef]
    [Google Scholar]
  10. Chambers T. J., Halevy M., Nestorowicz A., Rice C. M., Lustig S. 1998; West Nile virus envelope proteins: nucleotide sequence analysis of strains differing in mouse neuroinvasiveness. J Gen Virol 79:2375–2380
    [Google Scholar]
  11. Halevy M., Akov Y., Ben-Nathan D., Kobiler D., Lachmi B., Lustig S. 1994; Loss of active neuroinvasiveness in attenuated strains of West Nile virus: pathogenicity in immunocompetent and SCID mice. Arch Virol 137:355–370 [CrossRef]
    [Google Scholar]
  12. Hase T. 1993; Virus-neuron interactions in the mouse brain infected with Japanese encephalitis virus. Virchows Arch B Cell Pathol Incl Mol Pathol 64:161–170 [CrossRef]
    [Google Scholar]
  13. Hase T., Summers P. L., Eckels K. H., Baze W. B. 1987a; Maturation process of Japanese encephalitis virus in cultured mosquito cells in vivo and mouse brain cells in vivo . Arch Virol 96:135–151 [CrossRef]
    [Google Scholar]
  14. Hase T., Summers P. L., Eckels K. H., Baze W. B. 1987b; An electron and immunoelectron microscopic study of dengue-2 virus infection of cultured mosquito cells: maturation events. Arch Virol 92:273–291 [CrossRef]
    [Google Scholar]
  15. Heinz F. X. 1986; Epitope mapping of flavivirus glycoproteins. Adv Virus Res 31:103–168
    [Google Scholar]
  16. Ishak H., Takegami T., Kamimura K., Funada H. 2001; Comparative sequences of two type 1 dengue virus strains possessing different growth characteristics in vivo . Microbiol Immunol 45:327–331 [CrossRef]
    [Google Scholar]
  17. Johnson A. J., Guirakhoo F., Roehrig J. T. 1994; The envelope glycoproteins of dengue 1 and dengue 2 viruses grown in mosquito cells differ in their utilization of potential glycosylation sites. Virology 203:241–249 [CrossRef]
    [Google Scholar]
  18. Lad V. J., Shende V. R., Gupta A. K., Koshy A. A., Roy A. 2000; Effect of tunicamycin on expression of epitopes on Japanese encephalitis virus glycoprotein E in porcine kidney cells. Acta Virol 44:359–364
    [Google Scholar]
  19. Lanciotti R. S., Ebel G. D., Deubel V. & 9 other authors 2002; Complete genome sequences and phylogenetic analysis of West Nile virus strains isolated from the United States, Europe, and the Middle East. Virology 298:96–105 [CrossRef]
    [Google Scholar]
  20. Li J., Bhuvanakantham R., Howe J., Ng M. L. 2005a; Identifying the region influencing the cis -mode of maturation of West Nile (Sarafend) virus using chimeric infectious clones. Biochem Biophys Res Commun 334:714–720 [CrossRef]
    [Google Scholar]
  21. Li L., Barrett A. D., Beasley D. W. 2005b; Differential expression of domain III neutralizing epitopes on the envelope proteins of West Nile virus strains. Virology 335:99–105 [CrossRef]
    [Google Scholar]
  22. Lobigs M., Dalgarno L., Schlesinger J. J., Weir R. C. 1987; Location of a neutralization determinant in the E protein of yellow fever virus (17D vaccine strain). Virology 161:474–478 [CrossRef]
    [Google Scholar]
  23. Lorenz I. C., Kartenbeck J., Mezzacasa A., Allison S. L., Heinz F. X., Helenius A. 2003; Intracellular assembly and secretion of recombinant subviral particles from tick-borne encephalitis virus. J Virol 77:4370–4382 [CrossRef]
    [Google Scholar]
  24. McMinn P. C., Lee E., Hartley S., Roehrig J. T., Dalgarno L., Weir R. C. 1995; Murray Valley encephalitis virus envelope protein antigenic variants with altered hemagglutination properties and reduced neuroinvasiveness in mice. Virology 211:10–20 [CrossRef]
    [Google Scholar]
  25. Modis Y., Ogata S., Clements D., Harrison S. C. 2003; A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc Natl Acad Sci U S A 100:6986–6991 [CrossRef]
    [Google Scholar]
  26. Mukhopadhyay S., Kim B. S., Chipman P. R., Rossmann M. G., Kuhn R. J. 2003; Structure of West Nile virus. Science 302:248 [CrossRef]
    [Google Scholar]
  27. Navarro-Sanchez E., Altmeyer R., Amara A., Schwartz O., Fieschi F., Virelizier J. L., Arenzana-Seisdedos F., Despres P. 2003; Dendritic-cell-specific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cell-derived dengue viruses. EMBO Rep 4:723–728 [CrossRef]
    [Google Scholar]
  28. Ng M. L. 1987; Ultrastructural studies of Kunjin virus-infected Aedes albopictus cells. J Gen Virol 68:577–582 [CrossRef]
    [Google Scholar]
  29. Ng M. L., Howe J., Sreenivasan V., Mulders J. J. 1994; Flavivirus West Nile (Sarafend) egress at the plasma membrane. Arch Virol 137:303–313 [CrossRef]
    [Google Scholar]
  30. Oliphant T., Engle M., Nybakken G. E. & 11 other authors 2005; Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus. Nat Med 11:522–530 [CrossRef]
    [Google Scholar]
  31. Pletnev A. G., Bray M., Lai C. J. 1993; Chimeric tick-borne encephalitis and dengue type 4 viruses: effects of mutations on neurovirulence in mice. J Virol 67:4956–4963
    [Google Scholar]
  32. Rahman S., Matsumura T., Masuda K., Kanemura K., Fukunaga T. 1998; Maturation site of dengue type 2 virus in cultured mosquito C6/36 cells and Vero cells. Kobe J Med Sci 44:65–79
    [Google Scholar]
  33. Rey F. A., Heinz F. X., Mandl C., Kunz C., Harrison S. C. 1995; The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. Nature 375:291–298 [CrossRef]
    [Google Scholar]
  34. Ryman K. D., Ledger T. N., Weir R. C., Schlesinger J. J., Barrett A. D. 1997; Yellow fever virus envelope protein has two discrete type-specific neutralizing epitopes. J Gen Virol 78:1353–1356
    [Google Scholar]
  35. Sanchez M. D., Pierson T. C., McAllister D., Hanna S. L., Puffer B. A., Valentine L. E., Murtadha M. M., Hoxie J. A., Doms R. W. 2005; Characterization of neutralizing antibodies to West Nile virus. Virology 336:70–82 [CrossRef]
    [Google Scholar]
  36. Scherret J. H., Poidinger M., Mackenzie J. S., Broom A. K., Deubel V., Lipkin W. I., Briese T., Gould E. A., Hall R. A. 2001a; The relationships between West Nile and Kunjin viruses. Emerg Infect Dis 7:697–705 [CrossRef]
    [Google Scholar]
  37. Scherret J. H., Mackenzie J. S., Khromykh A. A., Hall R. A. 2001b; Biological significance of glycosylation of the envelope protein of Kunjin virus. Ann N Y Acad Sci 951:361–363
    [Google Scholar]
  38. Scherret J. H., Mackenzie J. S., Hall R. A., Deubel V., Gould E. A. 2002; Phylogeny and molecular epidemiology of West Nile and Kunjin viruses. Curr Top Microbiol Immunol 267:373–390
    [Google Scholar]
  39. Serafino A., Valli M. B., Alessandrini A., Ponzetto A., Carloni G., Bertolini L. 1997; Ultrastructural observations of viral particles within hepatitis C virus-infected human B lymphoblastoid cell line. Res Virol 148:153–159 [CrossRef]
    [Google Scholar]
  40. Shi P. Y., Tilgner M., Lo M. K., Kent K. A., Bernard K. A. 2002; Infectious cDNA clone of the epidemic West Nile virus from New York City. J Virol 76:5847–5856 [CrossRef]
    [Google Scholar]
  41. Shirato K., Miyoshi H., Goto A., Ako Y., Ueki T., Kariwa H., Takashima I. 2004; Viral envelope protein glycosylation is a molecular determinant of the neuroinvasiveness of the New York strain of West Nile virus. J Gen Virol 85:3637–3645 [CrossRef]
    [Google Scholar]
  42. Sreenivasan V., Ng K. L., Ng M. L. 1993; Brefeldin A affects West Nile virus replication in Vero cells but not C6/36 cells. J Virol Methods 45:1–17 [CrossRef]
    [Google Scholar]
  43. Vorndam V., Mathews J. H., Barrett A. D., Roehrig J. T., Trent D. W. 1993; Molecular and biological characterization of a non-glycosylated isolate of St Louis encephalitis virus. J Gen Virol 74:2653–2660 [CrossRef]
    [Google Scholar]
  44. Wang Y., Lobigs M., Lee E., Mullbacher A. 2003; CD8+ T cells mediate recovery and immunopathology in West Nile virus encephalitis. J Virol 77:13323–13334 [CrossRef]
    [Google Scholar]
  45. Westaway E. G., Brinton M. A., Gaidamovich S. & 7 other authors 1985; Flaviviridae . Intervirology24183–192 [CrossRef]
    [Google Scholar]
  46. Whealy M. E., Card J. P., Meade R. P., Robbins A. K., Enquist L. W. 1991; Effect of brefeldin A on alphaherpesvirus membrane protein glycosylation and virus egress. J Virol 65:1066–1081
    [Google Scholar]
  47. Zhang W., Chipman P. R., Corver J. & 7 other authors 2003; Visualization of membrane protein domains by cryo-electron microscopy of dengue virus. Nat Struct Biol 10:907–912 [CrossRef]
    [Google Scholar]
  48. Zhang Y., Zhang W., Ogata S., Clements D., Strauss J. H., Baker T. S., Kuhn R. J., Rossmann M. G. 2004; Conformational changes of the flavivirus E glycoprotein. Structure 12:1607–1618 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81320-0
Loading
/content/journal/jgv/10.1099/vir.0.81320-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed