Role of a conserved tripeptide in the endodomain of Sindbis virus glycoprotein E2 in virus assembly and function Free

Abstract

Envelopment of (SV) at the plasma membrane begins with the interaction of the E2 glycoprotein endodomain with a hydrophobic cleft in the surface of the pre-assembled nucleocapsid. The driving force for this budding event is thought to reside in this virus type-specific association at the surface of the cell. The specific amino acids involved in this interaction have not been identified; however, it has been proposed that a conserved motif (TPY) at aa 398–400 in the E2 tail plays a critical role in this interaction. This interaction has been examined with virus containing mutations at two positions in this conserved domain, T398A and Y400N. The viruses produced have very low infectivity (as determined by particle : p.f.u. ratios); however, there appears to be no defect in assembly, as the virus has wild-type density and electron microscopy shows assembled particles with no obvious aberrant structural changes. The loss of infectivity in the double mutant is accompanied by the loss of the ability to fuse cells after brief exposure to acid pH. These data support the idea that these residues are vital for production of infectious/functional virus; however, they are dispensable for assembly. These results, combined with other published observations, expand our understanding of the interaction of the E2 endodomain with the capsid protein.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81304-0
2006-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/3/657.html?itemId=/content/journal/jgv/10.1099/vir.0.81304-0&mimeType=html&fmt=ahah

References

  1. Anthony R. P., Brown D. T. 1991; Protein-protein interactions in an alphavirus membrane. J Virol 65:1187–1194
    [Google Scholar]
  2. Brown D. T., Waite M. R. F., Pfefferkorn E. R. 1972; Morphology and morphogenesis of Sindbis virus as seen with freeze-etching techniques. J Virol 10:524–536
    [Google Scholar]
  3. Carleton M., Lee H., Mulvey M., Brown D. T. 1997; Role of glycoprotein PE2 in formation and maturation of the Sindbis virus spike. J Virol 71:1558–1566
    [Google Scholar]
  4. Cheng R. H., Kuhn R. J., Olsen N. H., Rossman M. G., Choi H.-K., Smith T. J., Baker T. S. 1995; Nucleocapsid and glycoprotein organization in an enveloped virus. Cell 80:621–630 [CrossRef]
    [Google Scholar]
  5. Choi H.-K., Tong L., Minor W., Dumas P., Boege U., Rossmann M. G., Wengler G. 1991; Structure of Sindbis virus core protein reveals a chymotrypsin-like serine proteinase and the organization of the virion. Nature 354:37–43 [CrossRef]
    [Google Scholar]
  6. Coombs K., Brown D. T. 1987; Organization of the Sindbis virus nucleocapsid as revealed by bifunctional cross-linking agents. J Mol Biol 195:359–371 [CrossRef]
    [Google Scholar]
  7. Drake J. W., Holland J. J. 1999; Mutation rates among RNA viruses. Proc Natl Acad Sci U S A 96:13910–13913 [CrossRef]
    [Google Scholar]
  8. Edwards J., Brown D. T. 1986; Sindbis virus-mediated cell fusion from without is a two-step event. J Gen Virol 67:377–380 [CrossRef]
    [Google Scholar]
  9. Edwards J., Mann E., Brown D. T. 1983; Conformational changes in Sindbis virus envelope proteins accompanying exposure to low pH. J Virol 45:1090–1097
    [Google Scholar]
  10. Ferreira D., Hernandez R., Horton M., Brown D. T. 2003; Morphological variants of Sindbis virus produced by a mutation in the capsid protein. Virology 307:54–66 [CrossRef]
    [Google Scholar]
  11. Forsell K., Xing L., Kozlovska T., Cheng R. H., Garoff H. 2000; Membrane proteins organize a symmetrical virus. EMBO J 19:5081–5091 [CrossRef]
    [Google Scholar]
  12. Gaedigk-Nitschko K., Schlesinger M. J. 1991; Site-directed mutations in Sindbis virus E2 glycoprotein's cytoplasmic domain and the 6K protein lead to similar defects in virus assembly and budding. Virology 183:206–214 [CrossRef]
    [Google Scholar]
  13. Hernandez R., Lee H., Nelson C., Brown D. T. 2000; A single deletion in the membrane-proximal region of the Sindbis virus glycoprotein E2 endodomain blocks virus assembly. J Virol 74:4220–4228 [CrossRef]
    [Google Scholar]
  14. Hernandez R., Sinodis C., Horton M., Ferreira D., Yang C., Brown D. T. 2003; Deletions in the transmembrane domain of a Sindbis virus glycoprotein alter virus infectivity, stability, and host range. J Virol 77:12710–12719 [CrossRef]
    [Google Scholar]
  15. Hernandez R., Ferreira D., Sinodis C., Litton K., Brown D. T. 2005; Single amino acid insertions at the junction of the Sindbis virus E2 transmembrane domain and endodomain disrupt virus envelopment and alter infectivity. J Virol 79:7682–7697 [CrossRef]
    [Google Scholar]
  16. Ivanova L., Schlesinger M. J. 1993; Site-directed mutations in the Sindbis virus E2 glycoprotein identify palmitoylation sites and affect virus budding. J Virol 67:2546–2551
    [Google Scholar]
  17. Kellenberger E., Bitterli D. 1976; Preperation and counts of particles in electron microscopy: application of negative stain in the agarfiltration method. Microsc Acta 78:131–148
    [Google Scholar]
  18. Lee H., Brown D. T. 1994; Mutations in an exposed domain of Sindbis virus capsid protein result in the production of noninfectious virions and morphological variants. Virology 202:390–400 [CrossRef]
    [Google Scholar]
  19. Lee H., Ricker P. D., Brown D. T. 1994; The configuration of Sindbis virus envelope proteins is stabilized by the nucleocapsid protein. Virology 204:471–474 [CrossRef]
    [Google Scholar]
  20. Lee S., Owen K. E., Choi H.-K., Lee H., Lu G., Wengler G., Brown D. T., Rossmann M. G., Kuhn R. J. 1996; Identification of a protein binding site on the surface of the alphavirus nucleocapsid and its implication in virus assembly. Structure 4:531–541 [CrossRef]
    [Google Scholar]
  21. Liljeström P., Garoff H. 1991; Internally located cleavable signal sequences direct the formation of Semliki Forest virus membrane proteins from a polyprotein precursor. J Virol 65:147–154
    [Google Scholar]
  22. Liu N., Brown D. T. 1993a; Phosphorylation and dephosphorylation events play critical roles in Sindbis virus maturation. Virology 196:703–711 [CrossRef]
    [Google Scholar]
  23. Liu N., Brown D. T. 1993b; Transient translocation of the cytoplasmic (endo) domain of a type I membrane glycoprotein into cellular membranes. J Cell Biol 120:877–883 [CrossRef]
    [Google Scholar]
  24. Liu L. N., Lee H., Hernandez R., Brown D. T. 1996; Mutations in the endo domain of Sindbis virus glycoprotein E2 block phosphorylation, reorientation of the endo domain, and nucleocapsid binding. Virology 222:236–246 [CrossRef]
    [Google Scholar]
  25. Lopez S., Yao J.-S., Kuhn R. J., Strauss E. G., Strauss J. H. 1994; Nucleocapsid-glycoprotein interactions required for assembly of alphaviruses. J Virol 68:1316–1323
    [Google Scholar]
  26. Mann E., Edwards J., Brown D. T. 1983; Polycaryocyte formation mediated by Sindbis virus glycoproteins. J Virol 45:1083–1089
    [Google Scholar]
  27. Mulvey M., Brown D. T. 1994; Formation and rearrangement of disulfide bonds during maturation of the Sindbis virus E1 glycoprotein. J Virol 68:805–812
    [Google Scholar]
  28. Mulvey M., Brown D. T. 1996; Assembly of the Sindbis virus spike protein complex. Virology 219:125–132 [CrossRef]
    [Google Scholar]
  29. Nelson S., Hernandez R., Ferreira D., Brown D. T. 2005; In vivo processing and isolation of furin protease-sensitive alphavirus glycoproteins: a new technique for producing mutations in virus assembly. Virology 332:629–639 [CrossRef]
    [Google Scholar]
  30. Owen K. E., Kuhn R. J. 1996; Identification of a region in the Sindbis virus nucleocapsid protein that is involved in specificity of RNA encapsidation. J Virol 70:2757–2763
    [Google Scholar]
  31. Owen K. E., Kuhn R. J. 1997; Alphavirus budding is dependent on the interaction between the nucleocapsid and hydrophobic amino acids on the cytoplasmic domain of the E2 envelope glycoprotein. Virology 230:187–196 [CrossRef]
    [Google Scholar]
  32. Paredes A. M., Simon M. N., Brown D. T. 1992; The mass of the Sindbis virus nucleocapsid suggests it has T =4 icosahedral symmetry. Virology 187:329–332 [CrossRef]
    [Google Scholar]
  33. Paredes A. M., Brown D. T., Rothnagel R., Chiu W., Schoepp R. J., Johnston R. E., Prasad B. V. V. 1993; Three-dimensional structure of a membrane-containing virus. Proc Natl Acad Sci U S A 90:9095–9099 [CrossRef]
    [Google Scholar]
  34. Paredes A. M., Ferreira D., Horton M. & 8 other authors 2004; Conformational changes in Sindbis virions resulting from exposure to low pH and interactions with cells suggest that cell penetration may occur at the cell surface in the absence of membrane fusion. Virology 324:373–386 [CrossRef]
    [Google Scholar]
  35. Pletnev S. V., Zhang W., Mukhopadhyay S., Fisher B. R., Hernandez R., Brown D. T., Baker T. S., Rossmann M. G., Kuhn R. J. 2001; Locations of carbohydrate sites on alphavirus glycoproteins show that E1 forms an icosahedral scaffold. Cell 105:127–136 [CrossRef]
    [Google Scholar]
  36. Renz D., Brown D. T. 1976; Characteristics of Sindbis virus temperature-sensitive mutants in cultured BHK-21 and Aedes albopictus (mosquito) cells. J Virol 19:775–781
    [Google Scholar]
  37. Rice C. M., Levis R., Strauss J. H., Huang H. V. 1987; Production of infectious RNA transcripts from Sindbis virus cDNA clones: mapping of lethal mutations, rescue of a temperature-sensitive marker, and in vitro mutagenesis to generate defined mutants. J Virol 61:3809–3819
    [Google Scholar]
  38. Ryan C., Ivanova L., Schlesinger M. J. 1998; Mutations in the Sindbis virus capsid gene can partially suppress mutations in the cytoplasmic domain of the virus E2 glycoprotein spike. Virology 243:380–387 [CrossRef]
    [Google Scholar]
  39. Skoging U., Vihinen M., Nilsson L., Liljeström P. 1996; Aromatic interactions define the binding of the alphavirus spike to its nucleocapsid. Structure 4:519–529 [CrossRef]
    [Google Scholar]
  40. Strauss J. H., Strauss E. G. 1994; The alphaviruses: gene expression, replication, and evolution. Microbiol Rev 58:491–562
    [Google Scholar]
  41. Strauss E. G., Rice C. M., Strauss J. H. 1984; Complete nucleotide sequence of the genomic RNA of Sindbis virus. Virology 133:92–110 [CrossRef]
    [Google Scholar]
  42. Weiss B., Geigenmüller-Gnirke U., Schlesinger S. 1994; Interactions between Sindbis virus RNAs and a 68 amino acid derivative of the viral capsid protein further defines the capsid binding site. Nucleic Acids Res 22:780–786 [CrossRef]
    [Google Scholar]
  43. Wilkinson T. A., Tellinghuisen T. L., Kuhn R. J., Post C. B. 2005; Association of Sindbis virus capsid protein with phospholipid membranes and the E2 glycoprotein: implications for alphavirus assembly. Biochemistry 44:2800–2810 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81304-0
Loading
/content/journal/jgv/10.1099/vir.0.81304-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed