1887

Abstract

Systems for culture of (HCV) are essential tools to analyse virus–cell interactions and to investigate relevant pathophysiological aspects of HCV infection. Although the HCV replicon methodology has increased our understanding of HCV biology, this system does not reproduce the natural infection. Recently, tupaia () hepatocytes have been utilized for culture of HCV. In the present work, primary tupaia hepatocytes infected with HCV were used to analyse the evolution of HCV quasispecies in infected cells and the ability of the virus to influence antiviral and proinflammatory responses in cells sustaining virus replication. The results confirmed the potential of tupaia hepatocytes as a model for HCV infection, although this system is limited by rapid loss of differentiated cell phenotype in culture. These findings revealed an extraordinary plasticity of HCV quasispecies, which underwent rapid evolution to tupaia-tropic variants as early as 24 h after infection. It was also shown that HCV could activate interferon-sensitive genes, albeit modestly in comparison with other viruses such as . Importantly, HCV activated NF-B in primary hepatocytes and upregulated NF-B-responsive genes including the chemokines MCP-1 and CXCL2 (MIP-2). This effect may play a role in induction of the hepatic inflammatory reaction . In summary, HCV quasispecies adapt rapidly to the specific biology of the host and HCV stimulates a blunted interferon response while inducing a proinflammatory phenotype in the infected cell.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81273-0
2005-11-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/11/3065.html?itemId=/content/journal/jgv/10.1099/vir.0.81273-0&mimeType=html&fmt=ahah

References

  1. Barth, H., Cerino, R., Arcuri, M. & 12 other authors ( 2005; ). Scavenger receptor class B type I and hepatitis C virus infection of primary Tupaia hepatocytes. J Virol 79, 5774–5785.[CrossRef]
    [Google Scholar]
  2. Bowen, G. P., Borgland, S. L., Lam, M., Libermann, T. A., Wong, N. C. & Muruve, D. A. ( 2002; ). Adenovirus vector-induced inflammation: capsid-dependent induction of the C-C chemokine RANTES requires NF-κB. Hum Gene Ther 13, 367–379.[CrossRef]
    [Google Scholar]
  3. Boya, P., Larrea, E., Sola, I., Majano, P. L., Jimenez, C., Civeira, M. P. & Prieto, J. ( 2001; ). Nuclear factor-κB in the liver of patients with chronic hepatitis C: decreased RelA expression is associated with enhanced fibrosis progression. Hepatology 34, 1041–1048.[CrossRef]
    [Google Scholar]
  4. Bukh, J., Pietschmann, T., Lohmann, V. & 7 other authors ( 2002; ). Mutations that permit efficient replication of hepatitis C virus RNA in Huh-7 cells prevent productive replication in chimpanzees. Proc Natl Acad Sci U S A 99, 14416–14421.[CrossRef]
    [Google Scholar]
  5. Castet, V., Fournier, C., Soulier, A., Brillet, R., Coste, J., Larrey, D., Dhumeaux, D., Maurel, P. & Pawlotsky, J. M. ( 2002; ). Alpha interferon inhibits hepatitis C virus replication in primary human hepatocytes infected in vitro. J Virol 76, 8189–8199.[CrossRef]
    [Google Scholar]
  6. Cribier, B., Schmitt, C., Bingen, A., Kirn, A. & Keller, F. ( 1995; ). In vitro infection of peripheral blood mononuclear cells by hepatitis C virus. J Gen Virol 76, 2485–2491.[CrossRef]
    [Google Scholar]
  7. Farci, P. & Purcell, R. H. ( 2000; ). Clinical significance of hepatitis C virus genotypes and quasispecies. Semin Liver Dis 20, 103–126.
    [Google Scholar]
  8. Forns, X., Thimme, R., Govindarajan, S., Emerson, S. U., Purcell, R. H., Chisari, F. V. & Bukh, J. ( 2000; ). Hepatitis C virus lacking the hypervariable region 1 of the second envelope protein is infectious and causes acute resolving or persistent infection in chimpanzees. Proc Natl Acad Sci U S A 97, 13318–13323.[CrossRef]
    [Google Scholar]
  9. Fournier, C., Sureau, C., Coste, J., Ducos, J., Pageaux, G., Larrey, D., Domergue, J. & Maurel, P. ( 1998; ). In vitro infection of adult normal human hepatocytes in primary culture by hepatitis C virus. J Gen Virol 79, 2367–2374.
    [Google Scholar]
  10. Gong, G., Waris, G., Tanveer, R. & Siddiqui, A. ( 2001; ). Human hepatitis C virus NS5A protein alters intracellular calcium levels, induces oxidative stress, and activates STAT-3 and NF-κB. Proc Natl Acad Sci U S A 98, 9599–9604.[CrossRef]
    [Google Scholar]
  11. Iacovacci, S., Bertolini, L., Manzin, A., Valli, M. B., Battaglia, M., Ponzetto, A., Clementi, M. & Carloni, G. ( 1997; ). Quantitation of hepatitis C virus RNA production in two human bone marrow-derived B-cell lines infected in vitro. Res Virol 148, 147–151.[CrossRef]
    [Google Scholar]
  12. Kato, N., Ikeda, M., Sugiyama, K., Mizutani, T., Tanaka, T. & Shimotohno, K. ( 1998; ). Hepatitis C virus population dynamics in human lymphocytes and hepatocytes infected in vitro. J Gen Virol 79, 1859–1869.
    [Google Scholar]
  13. Lanford, R. E., Sureau, C., Jacob, J. R., White, R. & Fuerst, T. R. ( 1994; ). Demonstration of in vitro infection of chimpanzee hepatocytes with hepatitis C virus using strand-specific RT/PCR. Virology 202, 606–614.[CrossRef]
    [Google Scholar]
  14. Lanford, R. E., Chavez, D., Chisari, F. V. & Sureau, C. ( 1995; ). Lack of detection of negative-strand hepatitis C virus RNA in peripheral blood mononuclear cells and other extrahepatic tissues by the highly strand-specific rTth reverse transcriptase PCR. J Virol 69, 8079–8083.
    [Google Scholar]
  15. Laporte, J., Bain, C., Maurel, P., Inchauspe, G., Agut, H. & Cahour, A. ( 2003; ). Differential distribution and internal translation efficiency of hepatitis C virus quasispecies present in dendritic and liver cells. Blood 101, 52–57.[CrossRef]
    [Google Scholar]
  16. Li, Q., Ding, M. & Wang, H. ( 1995; ). The infection of hepatitis D virus in adult tupaia. Zhonghua Yi Xue Za Zhi 75, 611–613, 639–640 (in Chinese).
    [Google Scholar]
  17. Liljestrom, P. & Garoff, H. ( 1991; ). A new generation of animal cell expression vectors based on the Semliki Forest virus replicon. Biotechnology 9, 1356–1361.[CrossRef]
    [Google Scholar]
  18. Lohmann, V., Korner, F., Koch, J., Herian, U., Theilmann, L. & Bartenschlager, R. ( 1999; ). Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285, 110–113.[CrossRef]
    [Google Scholar]
  19. Lopez-Labrador, F. X., Ampurdanes, S., Gimenez-Barcons, M., Guilera, M., Costa, J., Jimenez de Anta, M. T., Sanchez-Tapias, J. M., Rodes, J. & Saiz, J. C. ( 1999; ). Relationship of the genomic complexity of hepatitis C virus with liver disease severity and response to interferon in patients with chronic HCV genotype 1b infection [correction of interferon]. Hepatology 29, 897–903; erratum 29, 1915.
    [Google Scholar]
  20. Manzin, A., Solforosi, L., Petrelli, E., Macarri, G., Tosone, G., Piazza, M. & Clementi, M. ( 1998; ). Evolution of hypervariable region 1 of hepatitis C virus in primary infection. J Virol 72, 6271–6276.
    [Google Scholar]
  21. Martin, R. D. ( 1990; ). Are tree-shrews primates? In Primate Origins and Evolution: a Phylogenetic Reconstruction, pp. 191–213. Edited by R. D. Martin. London: Chapman & Hall.
  22. Muhlbauer, M., Bosserhoff, A. K., Hartmann, A., Thasler, W. E., Weiss, T. S., Herfarth, H., Lock, G., Scholmerich, J. & Hellerbrand, C. ( 2003; ). A novel MCP-1 gene polymorphism is associated with hepatic MCP-1 expression and severity of HCV-related liver disease. Gastroenterology 125, 1085–1093.[CrossRef]
    [Google Scholar]
  23. Nakajima, N., Hijikata, M., Yoshikura, H. & Shimizu, Y. K. ( 1996; ). Characterization of long-term cultures of hepatitis C virus. J Virol 70, 3325–3329.
    [Google Scholar]
  24. Navas, M. C., Fuchs, A., Schvoerer, E., Bohbot, A., Aubertin, A. M. & Stoll-Keller, F. ( 2002; ). Dendritic cell susceptibility to hepatitis C virus genotype 1 infection. J Med Virol 67, 152–161.[CrossRef]
    [Google Scholar]
  25. Pessoa, M. G., Bzowej, N., Berenguer, M., Phung, Y., Kim, M., Ferrell, L., Hassoba, H. & Wright, T. L. ( 1999; ). Evolution of hepatitis C virus quasispecies in patients with severe cholestatic hepatitis after liver transplantation. Hepatology 30, 1513–1520.[CrossRef]
    [Google Scholar]
  26. Radkowski, M., Bednarska, A., Horban, A., Stanczak, J., Wilkinson, J., Adair, D. M., Nowicki, M., Rakela, J. & Laskus, T. ( 2004; ). Infection of primary human macrophages with hepatitis C virus in vitro: induction of tumour necrosis factor-α and interleukin 8. J Gen Virol 85, 47–59.[CrossRef]
    [Google Scholar]
  27. Robertson, B., Myers, G., Howard, C. & 14 other authors ( 1998; ). Classification, nomenclature, and database development for hepatitis C virus (HCV) and related viruses: proposals for standardization. International Committee on Virus Taxonomy. Arch Virol 143, 2493–2503.[CrossRef]
    [Google Scholar]
  28. Rumin, S., Gripon, P., Le Seyec, J., Corral-Debrinski, M. & Guguen-Guillouzo, C. ( 1996; ). Long-term productive episomal hepatitis B virus replication in primary cultures of adult human hepatocytes infected in vitro. J Viral Hepat 3, 227–238.[CrossRef]
    [Google Scholar]
  29. Rumin, S., Berthillon, P., Tanaka, E. & 8 other authors ( 1999; ). Dynamic analysis of hepatitis C virus replication and quasispecies selection in long-term cultures of adult human hepatocytes infected in vitro. J Gen Virol 80, 3007–3018.
    [Google Scholar]
  30. Sangar, D. V. & Carroll, A. R. ( 1998; ). A tale of two strands: reverse-transcriptase polymerase chain reaction detection of hepatitis C virus replication. Hepatology 28, 1173–1176.[CrossRef]
    [Google Scholar]
  31. Su, A. I., Pezacki, J. P., Wodicka, L. & 8 other authors ( 2002; ). Genomic analysis of the host response to hepatitis C virus infection. Proc Natl Acad Sci U S A 99, 15669–15674.[CrossRef]
    [Google Scholar]
  32. Wakita, T., Pietschmann, T., Kato, T. & 8 other authors ( 2005; ). Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med 11, 791–796.[CrossRef]
    [Google Scholar]
  33. Walpen, S., Beck, K. F., Schaefer, L., Raslik, I., Eberhardt, W., Schaefer, R. M. & Pfeilschifter, J. ( 2001; ). Nitric oxide induces MIP-2 transcription in rat renal mesangial cells and in a rat model of glomerulonephritis. FASEB J 15, 571–573.
    [Google Scholar]
  34. Walter, E., Keist, R., Niederost, B., Pult, I. & Blum, H. E. ( 1996; ). Hepatitis B virus infection of tupaia hepatocytes in vitro and in vivo. Hepatology 24, 1–5.
    [Google Scholar]
  35. Wang, Y., Rangan, G. K., Goodwin, B., Tay, Y. C. & Harris, D. C. ( 2000; ). Lipopolysaccharide-induced MCP-1 gene expression in rat tubular epithelial cells is nuclear factor-κB dependent. Kidney Int 57, 2011–2022.[CrossRef]
    [Google Scholar]
  36. Waris, G., Livolsi, A., Imbert, V., Peyron, J. F. & Siddiqui, A. ( 2003; ). Hepatitis C virus NS5A and subgenomic replicon activate NF-κB via tyrosine phosphorylation of IκBα and its degradation by calpain protease. J Biol Chem 278, 40778–40787.[CrossRef]
    [Google Scholar]
  37. Weiner, A. J., Brauer, M. J. & Rosenblatt, J. ( 1991; ). Variable and hypervariable domains are found in the regions of HCV corresponding to the flavivirus envelope and NS1 proteins and the pestivirus envelope glycoproteins. Virology 180, 842–848.[CrossRef]
    [Google Scholar]
  38. Xie, Z. C., Riezu-Boj, J. I., Lasarte, J. J., Guillen, J., Su, J. H., Civeira, M. P. & Prieto, J. ( 1998; ). Transmission of hepatitis C virus infection to tree shrews. Virology 244, 513–520.[CrossRef]
    [Google Scholar]
  39. Yan, R. Q., Su, J. J., Huang, D. R., Gan, Y. C., Yang, C. & Huang, G. H. ( 1996; ). Human hepatitis B virus and hepatocellular carcinoma. I. Experimental infection of tree shrews with hepatitis B virus. J Cancer Res Clin Oncol 122, 283–288.[CrossRef]
    [Google Scholar]
  40. Zhan, M. Y., Liu, C. B., Li, C. M. & 11 other authors ( 1981; ). A preliminary study of hepatitis A virus in Chinese tupaia [author's translation]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 3, 148–152 (in Chinese).
    [Google Scholar]
  41. Zhao, X., Tang, Z. Y., Klumpp, B., Wolff-Vorbeck, G., Barth, H., Levy, S., von Weizsacker, F., Blum, H. E. & Baumert, T. F. ( 2002; ). Primary hepatocytes of Tupaia belangeri as a potential model for hepatitis C virus infection. J Clin Invest 109, 221–232.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81273-0
Loading
/content/journal/jgv/10.1099/vir.0.81273-0
Loading

Data & Media loading...

Supplements

vol. , part 11, pp. 3065 - 3074

Primer sequences [PDF](37 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error