1887

Abstract

Alfuy virus (ALFV) is classified as a subtype of the flavivirus (MVEV); however, despite preliminary reports of antigenic and ecological similarities with MVEV, ALFV has not been associated with human disease. Here, it was shown that ALFV is at least 10-fold less neuroinvasive than MVEV after peripheral inoculation of 3-week-old Swiss outbred mice, but ALFV demonstrates similar neurovirulence. In addition, it was shown that ALFV is partially attenuated in mice that are deficient in interferon responses, in contrast to MVEV which is uniformly lethal in these mice. To assess the antigenic relationship between these viruses, a panel of monoclonal antibodies was tested for the ability to bind to ALFV and MVEV in ELISA. Although the majority of monoclonal antibodies recognized both viruses, confirming their antigenic similarity, several discriminating antibodies were identified. Finally, the entire genome of the prototype strain of ALFV (MRM3929) was sequenced and phylogenetically analysed. Nucleotide (73 %) and amino acid sequence (83 %) identity between ALFV and MVEV confirmed previous reports of their close relationship. Several nucleotide and amino acid deletions and/or substitutions with putative functional significance were identified in ALFV, including the abolition of a conserved glycosylation site in the envelope protein and the deletion of the terminal dinucleotide 5′-CU-3′ found in all other members of the genus. These findings confirm previous reports that ALFV is closely related to MVEV, but also highlights significant antigenic, genetic and phenotypic divergence from MVEV. Accordingly, the data suggest that ALFV is a distinct species within the serogroup .

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81252-0
2006-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/2/329.html?itemId=/content/journal/jgv/10.1099/vir.0.81252-0&mimeType=html&fmt=ahah

References

  1. Adams S. C., Broom A. K., Sammels L. M., Hartnett A. C., Howard M. J., Coelen R. J., Mackenzie J. S., Hall R. A. 1995; Glycosylation and antigenic variation among Kunjin virus isolates. Virology 206:49–56 [CrossRef]
    [Google Scholar]
  2. Beasley D. W., Whiteman M. C., Zhang S. & 7 other authors 2005; Envelope protein glycosylation status influences mouse neuroinvasion phenotype of genetic lineage 1 West Nile virus strains. J Virol 79:8339–8347 [CrossRef]
    [Google Scholar]
  3. Brinton M. A., Dispoto J. H. 1988; Sequence and secondary structure analysis of the 5′-terminal region of flavivirus genome RNA. Virology 162:290–299 [CrossRef]
    [Google Scholar]
  4. Brinton M. A., Fernandez A. V., Dispoto J. H. 1986; The 3′-nucleotides of flavivirus genomic RNA form a conserved secondary structure. Virology 153:113–121 [CrossRef]
    [Google Scholar]
  5. Calisher C. H., Karabatsos N., Dalrymple J. M., Shope R. E., Porterfield J. S., Westaway E. G., Brandt W. E. 1989; Antigenic relationships between flaviviruses as determined by cross-neutralization tests with polyclonal antisera. J Gen Virol 70:37–43 [CrossRef]
    [Google Scholar]
  6. Chambers T. J., Halevy M., Nestorowicz A., Rice C. M., Lustig S. 1998; West Nile virus envelope proteins: nucleotide sequence analysis of strains differing in mouse neuroinvasiveness. J Gen Virol 79:2375–2380
    [Google Scholar]
  7. Coelen R. J., Mackenzie J. S. 1988; Genetic variation of Murray Valley encephalitis virus. J Gen Virol 69:1903–1912 [CrossRef]
    [Google Scholar]
  8. De Madrid A. T., Porterfield J. S. 1974; The flaviviruses (group B arboviruses): a cross-neutralization study. J Gen Virol 23:91–96 [CrossRef]
    [Google Scholar]
  9. Doherty R. L., Carley J. G., Filippich C., White J., Gust I. D. 1976; Murray Valley encephalitis in Australia, 1974: antibody response in cases and community. Aust N Z J Med 6:446–453 [CrossRef]
    [Google Scholar]
  10. Doherty R. L., Carley J. G., Kay B. H., Filippich C., Marks E. N., Frazier C. L. 1979; Isolation of virus strains from mosquitoes collected in Queensland, 1972–1976. Aust J Exp Biol Med Sci 57:509–520 [CrossRef]
    [Google Scholar]
  11. Felsenstein J. 1989; phylip - Phylogeny Inference Package (version 3.2). Cladistics 5:164–166
    [Google Scholar]
  12. Flynn L. M., Coelen R. J., Mackenzie J. S. 1989; Kunjin virus isolates of Australia are genetically homogeneous. J Gen Virol 70:2819–2824 [CrossRef]
    [Google Scholar]
  13. Fromont-Racine M., Bertrand E., Pictet R., Grange T. 1993; A highly sensitive method for mapping the 5′ termini of mRNAs. Nucleic Acids Res 21:1683–1684 [CrossRef]
    [Google Scholar]
  14. Gentry M. K., Henchal E. A., McCown J. M., Brandt W. E., Dalrymple J. M. 1982; Identification of distinct antigenic determinants on dengue-2 virus using monoclonal antibodies. Am J Trop Med Hyg 31:548–555
    [Google Scholar]
  15. Gorman B. M., Leer J. R., Filippich C., Goss P. D., Doherty R. L. 1975; Plaquing and neutralization of arboviruses in the PS-EK line of cells. Aust J Med Technol 6:65–71
    [Google Scholar]
  16. Hall R. A., Burgess G. W., Kay B. H. 1988; Type-specific monoclonal antibodies produced to proteins of Murray Valley encephalitis virus. Immunol Cell Biol 66:51–56 [CrossRef]
    [Google Scholar]
  17. Hall R. A., Kay B. H., Burgess G. W., Clancy P., Fanning I. D. 1990; Epitope analysis of the envelope and non-structural glycoproteins of Murray Valley encephalitis virus. J Gen Virol 71:2923–2930 [CrossRef]
    [Google Scholar]
  18. Hall R. A., Broom A. K., Hartnett A. C., Howard M. J., Mackenzie J. S. 1995; Immunodominant epitopes on the NS1 protein of MVE and KUN viruses serve as targets for a blocking ELISA to detect virus-specific antibodies in sentinel animal serum. J Virol Methods 51:201–210 [CrossRef]
    [Google Scholar]
  19. Hall R. A., Khromykh A. A., Mackenzie J. M., Scherret J. H., Khromykh T. I., Mackenzie J. S. 1999; Loss of dimerisation of the nonstructural protein NS1 of Kunjin virus delays viral replication and reduces virulence in mice, but still allows secretion of NS1. Virology 264:66–75 [CrossRef]
    [Google Scholar]
  20. Heinz F. X., Collett M. S., Purcell R. H., Gould E. A., Howard C. R., Houghton M., Moormann R. J. M., Rice C. M., Thiel H.-J. 2000; Flaviviridae . In Virus Taxonomy, Seventh Report of the International Committee for the Taxonomy of Viruses pp  859–878 Edited by van Regenmortel M. H. V., Fauquet C. M., Bishop D. H. L., Carstens E. B., Estes M. K., Lemon S. M., Maniloff J., Mayo M. A., McGeoch D. J., Pringle C. R., Wickner R. B. San Diego: Academic Press;
    [Google Scholar]
  21. Johansen C. A., Nisbet D. J., Zborowski P., van den Hurk A. F., Ritchie S. A., Mackenzie J. S. 2003; Flavivirus isolations from mosquitoes collected from western Cape York Peninsula. Australia: 1999–2000 J Am Mosq Control Assoc 19:392–396
    [Google Scholar]
  22. Khromykh A. A., Westaway E. G. 1996; RNA binding properties of core protein of the flavivirus Kunjin. Arch Virol 141:685–699 [CrossRef]
    [Google Scholar]
  23. Khromykh A. A., Kondratieva N., Sgro J. Y., Palmenberg A., Westaway E. G. 2003; Significance in replication of the terminal nucleotides of the flavivirus genome. J Virol 77:10623–10629 [CrossRef]
    [Google Scholar]
  24. Kuno G., Chang G. J., Tsuchiya K. R., Karabatsos N., Cropp C. B. 1998; Phylogeny of the genus Flavivirus . J Virol 72:73–83
    [Google Scholar]
  25. Lee E., Lobigs M. 2000; Substitutions at the putative receptor-binding site of an encephalitic flavivirus alter virulence and host cell tropism and reveal a role for glycosaminoglycans in entry. J Virol 74:8867–8875 [CrossRef]
    [Google Scholar]
  26. Lee E., Lobigs M. 2002; Mechanism of virulence attenuation of glycosaminoglycan-binding variants of Japanese encephalitis virus and Murray Valley encephalitis virus. J Virol 76:4901–4911 [CrossRef]
    [Google Scholar]
  27. Lee E., Hall R. A., Lobigs M. 2004; Common E protein determinants for attenuation of glycosaminoglycan-binding variants of Japanese encephalitis and West Nile viruses. J Virol 78:8271–8280 [CrossRef]
    [Google Scholar]
  28. Licon Luna R. M., Lee E., Mullbacher A., Blanden R. V., Langman R., Lobigs M. 2002; Lack of both Fas ligand and perforin protects from flavivirus-mediated encephalitis in mice. J Virol 76:3202–3211 [CrossRef]
    [Google Scholar]
  29. Lindenbach B. D., Rice C. M. 2003; Molecular biology of flaviviruses. Adv Virus Res 59:23–61
    [Google Scholar]
  30. Liu X., Gorovsky M. A. 1993; Mapping the 5′ and 3′ ends of tetrahymena thermophila mRNAs using RNA ligase mediated amplification of cDNA ends (RLM-RACE). Nucleic Acids Res 21:4954–4960 [CrossRef]
    [Google Scholar]
  31. Lobigs M., Marshall I. D., Weir R. C., Dalgarno L. 1986a; Genetic differentiation of Murray Valley encephalitis virus in Australia and Papua New Guinea. Aust J Exp Biol Med Sci 64:571–585 [CrossRef]
    [Google Scholar]
  32. Lobigs M., Weir R. C., Dalgarno L. 1986b; Genetic analysis of Kunjin virus isolates using Hae III and Taq I restriction digests of single-stranded cDNA to virion RNA. Aust J Exp Biol Med Sci 64:185–196 [CrossRef]
    [Google Scholar]
  33. Lobigs M., Marshall I. D., Weir R. C., Dalgarno L. 1988; Murray Valley encephalitis virus field strains from Australia and Papua New Guinea: studies on the sequence of the major envelope protein gene and virulence for mice. Virology 165:245–255 [CrossRef]
    [Google Scholar]
  34. Lobigs M., Usha R., Nestorowicz A., Marshall I. D., Weir R. C., Dalgarno L. 1990; Host cell selection of Murray Valley encephalitis virus variants altered at an RGD sequence in the envelope protein and in mouse virulence. Virology 176:587–595 [CrossRef]
    [Google Scholar]
  35. Lobigs M., Mullbacher A., Wang Y., Pavy M., Lee E. 2003; Role of type I and type II interferon responses in recovery from infection with an encephalitic flavivirus. J Gen Virol 84:567–572 [CrossRef]
    [Google Scholar]
  36. Lorenz I. C., Allison S. L., Heinz F. X., Helenius A. 2002; Folding and dimerization of tick-borne encephalitis virus envelope proteins prM and E in the endoplasmic reticulum. J Virol 76:5480–5491 [CrossRef]
    [Google Scholar]
  37. Mandl C. W., Holzmann H., Kunz C., Heinz F. X. 1993; Complete genomic sequence of Powassan virus: evaluation of genetic elements in tick-borne versus mosquito-borne flaviviruses. Virology 194:173–184 [CrossRef]
    [Google Scholar]
  38. Marshall I. D., Woodroofe G. M., Hirsch S. 1982; Viruses recovered from mosquitoes and wildlife serum collected in the Murray Valley of South-eastern Australia, February 1974, during an epidemic of encephalitis. Aust J Exp Biol Med Sci 60:457–470 [CrossRef]
    [Google Scholar]
  39. McMinn P. C. 1997; The molecular basis of virulence of the encephalitogenic flaviviruses. J Gen Virol 78:2711–2722
    [Google Scholar]
  40. McMinn P. C., Lee E., Hartley S., Roehrig J. T., Dalgarno L., Weir R. C. 1995a; Murray Valley encephalitis virus envelope protein antigenic variants with altered hemagglutination properties and reduced neuroinvasiveness in mice. Virology 211:10–20 [CrossRef]
    [Google Scholar]
  41. McMinn P. C., Marshall I. D., Dalgarno L. 1995b; Neurovirulence and neuroinvasiveness of Murray Valley encephalitis virus mutants selected by passage in a monkey kidney cell line. J Gen Virol 76:865–872 [CrossRef]
    [Google Scholar]
  42. McMinn P. C., Weir R. C., Dalgarno L. 1996; A mouse-attenuated envelope protein variant of Murray Valley encephalitis virus with altered fusion activity. J Gen Virol 77:2085–2088 [CrossRef]
    [Google Scholar]
  43. Muller U., Steinhoff U., Reis L. F., Hemmi S., Pavlovic J., Zinkernagel R. M., Aguet M. 1994; Functional role of type I and type II interferons in antiviral defense. Science 264:1918–1921 [CrossRef]
    [Google Scholar]
  44. Pletnev A. G., Bray M., Lai C. J. 1993; Chimeric tick-borne encephalitis and dengue type 4 viruses: effects of mutations on neurovirulence in mice. J Virol 67:4956–4963
    [Google Scholar]
  45. Poidinger M., Hall R. A., Mackenzie J. S. 1996; Molecular characterization of the Japanese encephalitis serocomplex of the flavivirus genus. Virology 218:417–421 [CrossRef]
    [Google Scholar]
  46. Proutski V., Gould E. A., Holmes E. C. 1997; Secondary structure of the 3′ untranslated region of flaviviruses: similarities and differences. Nucleic Acids Res 25:1194–1202 [CrossRef]
    [Google Scholar]
  47. Reed L. J., Muench H. 1938; A simple method of estimating fifty per cent endpoints. Am J Hyg 27:493–497
    [Google Scholar]
  48. Rey F. A., Heinz F. X., Mandl C., Kunz C., Harrison S. C. 1995; The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. Nature 375:291–298 [CrossRef]
    [Google Scholar]
  49. Rice C. M., Lenches E. M., Eddy S. R., Shin S. J., Sheets R. L., Strauss J. H. 1985; Nucleotide sequence of yellow fever virus: implications for flavivirus gene expression and evolution. Science 229:726–733 [CrossRef]
    [Google Scholar]
  50. Sammels L. M., Lindsay M. D., Poidinger M., Coelen R. J., Mackenzie J. S. 1999; Geographic distribution and evolution of Sindbis virus in Australia. J Gen Virol 80:739–748
    [Google Scholar]
  51. Schaefer B. C. 1995; Revolutions in rapid amplification of cDNA ends: new strategies for polymerase chain reaction cloning of full-length cDNA ends. Anal Biochem 227:255–273 [CrossRef]
    [Google Scholar]
  52. Scherret J. H., Mackenzie J. S., Khromykh A. A., Hall R. A. 2001; Biological significance of glycosylation of the envelope protein of Kunjin virus. Ann N Y Acad Sci 951:361–363
    [Google Scholar]
  53. Shi P. Y., Brinton M. A., Veal J. M., Zhong Y. Y., Wilson W. D. 1996; Evidence for the existence of a pseudoknot structure at the 3′ terminus of the flavivirus genomic RNA. Biochemistry 35:4222–4230 [CrossRef]
    [Google Scholar]
  54. Shirato K., Miyoshi H., Goto A., Ako Y., Ueki T., Kariwa H., Takashima I. 2004; Viral envelope protein glycosylation is a molecular determinant of the neuroinvasiveness of the New York strain of West Nile virus. J Gen Virol 85:3637–3645 [CrossRef]
    [Google Scholar]
  55. Stadler K., Allison S. L., Schalich J., Heinz F. X. 1997; Proteolytic activation of tick-borne encephalitis virus by furin. J Virol 71:8475–8481
    [Google Scholar]
  56. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  57. Tilgner M., Shi P. Y. 2004; Structure and function of the 3′ terminal six nucleotides of the West Nile virus genome in viral replication. J Virol 78:8159–8171 [CrossRef]
    [Google Scholar]
  58. Volloch V., Schweitzer B., Zhang X., Rits S. 1991; Identification of negative-strand complements to cytochrome oxidase subunit III RNA in Trypanosoma brucei . Proc Natl Acad Sci U S A 88:10671–10675 [CrossRef]
    [Google Scholar]
  59. Volloch V., Schweitzer B., Rits S. 1994; Ligation-mediated amplification of RNA from murine erythroid cells reveals a novel class of beta globin mRNA with an extended 5′-untranslated region. Nucleic Acids Res 22:2507–2511 [CrossRef]
    [Google Scholar]
  60. Vorndam V., Mathews J. H., Barrett A. D., Roehrig J. T., Trent D. W. 1993; Molecular and biological characterization of a non-glycosylated isolate of St Louis encephalitis virus. J Gen Virol 74:2653–2660 [CrossRef]
    [Google Scholar]
  61. Wallner G., Mandl C. W., Kunz C., Heinz F. X. 1995; The flavivirus 3′-noncoding region: extensive size heterogeneity independent of evolutionary relationships among strains of tick-borne encephalitis virus. Virology 213:169–178 [CrossRef]
    [Google Scholar]
  62. Whitehead R. H., Doderty R. L., Domrow R., Standfast H. A., Wetters E. J. 1968; Studies of the epidemiology of arthropod-borne virus infections at Mitchell River Mission, Cape York Peninsula, North Queensland. III. Virus studies of wild birds, 1964–1967. Trans R Soc Trop Med Hyg 62:439–445 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81252-0
Loading
/content/journal/jgv/10.1099/vir.0.81252-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error